SCHOOL REPORT CARD TECHNICAL GUIDE
 7/31/2013

Document Control

Document Information

Title	School Report Card Technical Guide
Revision	1
Issue Date	Not yet issued
Security Level	Public
Filename	School Report Card Technical Guide 2013.docx

Calculating School Accountability Scores

This document provides descriptions for calculating the scores comprising Wisconsin's Accountability Index. These scores are displayed in the School Report Card and the School Report Card Detail:

- Overall Accountability Score
- Priority Area Scores
- Student Engagement Indicator deductions

You can approximate the calculations used to arrive at a school's Accountability Index scores using data from the School Report Card Detail and this document. However, scores calculated with this document may not exactly match a school's score due to rounding, both in the calculation itself and in the display of values on the School Report Card Detail.

Table of Contents

Document Information ii
Table of Contents iii
Building the Overall Accountability Score 5
Background 5
Global Notes 6
Reading the Report Card 7
Overall Accountability Score Walkthrough \#1 7
Overall Accountability Score Walkthrough \#2 9
Overall Accountability Score Walkthrough \#3 10
Overall Accountability Score Worksheet 11
Calculating a Score for the Student Achievement Priority Area 13
Background 13
Reading the Report Card Detail 13
Student Achievement Walkthrough 15
Student Achievement Priority Area Worksheet 18
Calculating a Score for the Student Growth Priority Area 23
Background 23
Reading the Report Card Detail 26
Student Growth Walkthrough 27
Student Growth Priority Area Worksheet 32
Calculating a Score for the Closing Gaps Priority Area 37
Background 37
Reading the Report Card Detail 38
Closing Gaps Walkthrough 41
Closing Gaps Priority Area Worksheet 50
Calculating a Score for the On-Track and Postsecondary Readiness Priority Area 66
Background 66
Reading the Report Card Detail 67
On-Track Walkthrough \#1 69
On-Track Walkthrough \#2 71
On-Track Walkthrough \#3 73
On-Track and Postsecondary Readiness Priority Area Worksheet 77
Calculating Student Engagement Indicator Deductions 82
Test Participation 83
Absenteeism 85
Dropout 87

Building the Overall Accountability Score

Wisconsin's school accountability system uses multiple measures across four Priority Areas and expectations of student engagement to build a 0-to-100-point score for each school. This document connects the data on the School Report Card Detail to the school's Overall Accountability Score.

The Overall Accountability Score is derived from the Accountability Index, which includes separate scores for each of four Priority Areas-Student Achievement, Student Growth, Closing Gaps, and On-Track and Postsecondary Readinessas well as potential deductions for schools missing statewide goals for Student Engagement Indicators. Like the Overall Accountability Score, each of the Priority Areas is scored on a 0-to-100 scale. However, because Wisconsin has schools of many different sizes, grade levels, and student populations, not all of the Priority Areas apply in the same way to every school. Therefore, combining the Priority Area scores to arrive at an overall score is more complicated than taking a straight average of them.

Background

The Wisconsin Department of Public Instruction (DPI) bases the process of building a school's Overall Accountability Score on three important principles:

1. We cannot calculate every Priority Area score for every school. For example, Student Growth requires the state to have WKCE test scores for consecutive grades in the same school; because Wisconsin only tests high school students in $10^{\text {th }}$ grade, traditional high schools (grades 9-12) are excluded. Also, every component of the Accountability Index requires there be at least 20 students with data to calculate a score.
2. A school should not be advantaged or disadvantaged by the presence or lack of a Priority Area or component. Simply averaging the Priority Areas would create a bias for high schools, which are generally not measured on Student Growth, increasing their scores compared to elementary and middle schools.
3. The majority of Wisconsin schools have very high rates of attendance and high school graduation, the major determinants of the On-Track and Postsecondary Readiness Priority Area score. There is very little overall statewide variation in these measures-performance gaps are driven primarily by a few "outlier" schools with low rates.

We use two solutions to build an overall score that follows these principles:

1. Student Growth and Closing Gaps scores are aligned with Student Achievement. Aligning scores to a common scale avoids creating a bias between these Priority Areas.
2. On-Track and Postsecondary Readiness scores have a fixed weight no matter how many other Priority Area scores are calculated. Fixing the weight of this Priority Area allows us to account for the narrow overall range of high attendance and graduation rates.

The process for determining a school's Overall Accountability Score consists of calculating a weighted average Priority Areas score from the individual Priority Area scores and then subtracting any applicable Student Engagement Indicator deductions. The following method takes into account that scoring for the On-Track and Postsecondary Readiness Priority

Area behaves a little differently from scoring for the first three Priority Areas: some schools will only have a possible maximum score of 80 points, rather than the typical 100 points, for On-Track.

- Begin deriving the weighted average Priority Areas score by taking the average of the Student Achievement, Student Growth, and Closing Gaps scores. The average is the sum of the points earned for those Priority Areas divided by the number of the Priority Areas that apply to the school.
- Next, multiply that average by a factor that is determined by which components of the On-Track and Postsecondary Readiness Priority Area are calculated for the school:
- If there is both an attendance or graduation score and scores for other On-Track components, in which case the maximum score for the On-Track Priority Area is 100 , then the average is multiplied by 3.
- If there is only an attendance or graduation score, in which case the maximum score for the On-Track Priority Area is 80 , then the average is multiplied by 3.2.
- To finish producing the weighted average Priority Areas score, add this multiplied average of the first three Priority Areas to the On-Track and Postsecondary Readiness score, and divide this sum by 4.
- Finally, subtract any Student Engagement Indicator deductions from the weighted average Priority Areas score to arrive at the Overall Accountability Score. The maximum possible total deduction is 20 points for a school that misses all Student Engagement goals. (See Overall Accountability Score Walkthrough, pg. 7)

The Overall Accountability Score determines which Accountability Rating Category a school falls into. In the longer term, DPI plans to align these categories with particular levels of support, as indicated by the following table.

Accountability Rating Category	Accountability Score Range		Level of Support (Future)
	Minimum	Maximum	
Significantly Exceeds Expectations	83	100	Rewards and Replication
Exceeds Expectations	73	82.9	Rewards and Replication
Meets Expectations	63	72.9	Local Improvement Efforts
Meets Few Expectations	53	62.9	State Support
Fails to Meet Expectations	0	52.9	State Support

Global Notes

- The Accountability Index has four Priority Areas and a set of Student Engagement Indicators. Within each area, individual components are calculated. Example: Student Achievement is a Priority Area; Reading Achievement and Mathematics Achievement are its two components.
- Measures based upon data from the Wisconsin Student Assessment System (WSAS)—which include Student Achievement, Student Growth, and the achievement components of Closing Gaps and On-Track and Postsecondary Readiness-reflect the NAEP-based reading and mathematics cut scores developed for the Wisconsin Knowledge and Concepts Examination (WKCE). NAEP-based WKCE cut scores have been applied retroactively so that proficiency level data from prior years are directly comparable to the most current year.

Proficiency level data for the Wisconsin Alternate Assessment for Students with Disabilities (WAA-SwD) are unchanged.

- All scores are calculated and reported to one-tenth of a point.
- Calculations are rounded to the third decimal point (0.001 , or 0.1%). The only exception is Test Participation rates, which are rounded to the nearest whole percentage point. Within the calculation software, rounding is applied in two places: when individual student data are aggregated into a rate or average and at the end of a sequence of algebraic operations.
- DPI uses a "cell size," the minimum number of students needed to calculate a data component, of 20 students. In most cases, the cell size is only applied to the current year of data. In the $3^{\text {rd }}$ Grade Reading and $8^{\text {th }}$ Grade Mathematics Achievement components of the On-Track and Postsecondary Readiness Priority Area and in the Student Engagement Indicators, the cell size is applied to the three most recent years of data.
- Determination of whether a student attended a school for the Full Academic Year (FAY) is based on FAY for the school, not the district. Students tested in a school's lowest grade, however, have district FAY status used as a substitute.
- State comparisons are provided on the front page for one of six grade bands (K-5, 6-8, 9-12, K-8, 6-12, and K-12) that most closely matches the school. Comparison scores treat all Wisconsin students within a particular grade band as if they were one giant school. These scores are calculated using the same methodology as individual school scores. Comparisons are not used to determine a school's score or rating category.
- Graduation, attendance and absenteeism data are from the prior year, not the current year, due to data availability. For example, the most recent graduation, attendance, and absenteeism data used in 2011-12 report cards was from 2010-11.

Reading the Report Card

The Overall Accountability Score, Priority Area scores, and Student Engagement Indicator deductions are shown on the School Report Card and page 1 of the School Report Card Detail. The following sample contains no performance data but shows how the information is laid out.

Overall Accountability Score Walkthrough \#1

Sample Elementary School has the following Priority Area scores:

Priority Area or Component	Score/Possible
Student Achievement	$71.7 / 100$
Student Growth	$59.0 / 100$
Closing Gaps	$62.4 / 100$
On-Track and Postsecondary Readiness	
\quad Attendance	$77.6 / 80$
$\quad 3^{\text {rd }}$ Grade Reading	$15.5 / 20$
Student Engagement Indicators	No deductions

Step 1: Combine Student Achievement, Student Growth, and Closing Gaps
This school has scores calculated for all three of these Priority Areas.
Average $=\frac{\text { Student Achievement Score }+ \text { Student Growth Score }+ \text { Closing Gaps Score }}{3}$
The school also has both an attendance or graduation score and scores for other On-Track components, so this average is multiplied by 3 .

Average $\times 3=\frac{71.7+59.0+62.4}{3} \times 3=\mathbf{1 9 3 . 1}$
Step 2: Combine Result with On-Track and Postsecondary Readiness Scores
Weighted Average Priority Areas Score $=\frac{(\text { Average } \times 3)+\text { Attendance Score }+ \text { Other On-Track Scores }}{4}$
Weighted Average Priority Areas Score $=\frac{193.1+77.6+15.5}{4}=\mathbf{7 1 . 6}$
Step 3: Apply Student Engagement Indicator Deductions
Overall Accountability Score = Weighted Average Priority AreasScore - Deductions
Overall Accountability Score $=71.6-0=71.6$
Sample Elementary School's Overall Accountability Score is 71.6, putting it into the Meets Expectations category.

Overall Accountability Score Walkthrough \#2

Example High School has the following Priority Area scores:

Priority Area or Component	Score/Possible
Student Achievement	$56.9 / 100$
Closing Gaps	$70.2 / 100$
On-Track and Postsecondary Readiness	
\quad Graduation	$68.8 / 80$
\quad ACT Participation/Performance	$9.6 / 20$
Student Engagement Indicators	-5 for
	Test Participation

It does not have a Student Growth score because there is only one tested grade, $10^{\text {th }}$, in the school.
Step 1: Combine Student Achievement, Student Growth, and Closing Gaps
Average $=\frac{\text { Student Achievement Score }+ \text { Closing Gaps Score }}{2}$
The school also has both an attendance or graduation score and scores for other On-Track components, so this average is multiplied by 3

Average $\times 3=\frac{56.9+70.2}{2} \times 3=\mathbf{1 9 0 . 7}$

Step 2: Combine Result with On-Track and Postsecondary Readiness Scores

Weighted Average Priority Areas Score $=\frac{(\text { Average } \times 3)+\text { Graduation Score }+ \text { Other On-Track Scores }}{4}$
Weighted Average Priority Areas Score $=\frac{190.7+68.8+9.6}{4}=\mathbf{6 7 . 3}$

Step 3: Apply Student Engagement Indicator Deductions

Overall Accountability Score $=$ Weighted Average Priority Areas Score - Deductions
Overall Accountability Score $=67.3-5=\mathbf{6 2 . 3}$
Example High School's Overall Accountability Score is 62.3, putting it into the Meets Few Expectations category.

Overall Accountability Score Walkthrough \#3

Rural Middle School has the following Priority Area scores:

Priority Area or Component	Score/Possible
Student Achievement	$86.2 / 100$
Student Growth	$54.0 / 100$
On-Track and Postsecondary Readiness	
\quad Attendance	$77.9 / 80$
Student Engagement Indicators	No deductions

It does not have a Closing Gaps score because it is small and none of its student groups have at least 20 students (does not meet cell size). It does not have any On-Track and Postsecondary Readiness component scores beyond attendance because it is a grades $4-6$ school (and thus has no $3^{\text {rd }}$ grade reading or $8^{\text {th }}$ grade mathematics data). In this case, where the school has only attendance, we have to transform the attendance score from being out of 100 points to being out of 80 points (as for schools with other components of their On-Track and Postsecondary Readiness scores).

Step 1: Combine Student Achievement, Student Growth, and Closing Gaps

Average $=\frac{\text { Student Achievement Score }+ \text { Student Growth Score }}{2}$
The school has an attendance score but no scores for other On-Track components, so this average is multiplied by 3.2 .

Average $\times 3.2=\frac{86.2+54.0}{2} \times 3.2=\mathbf{2 2 4 . 3}$
Step 2: Combine Result with On-Track and Postsecondary Readiness Scores
Weighted Average Priority Areas Score $=\frac{(\text { Average } \times 3.2)+(\text { Attendance Score })}{4}$
Weighted Average Priority Areas Score $=\frac{224.3+77.9}{4}=\mathbf{7 5 . 6}$
Step 3: Apply Student Engagement Indicator Deductions
Overall Accountability Score $=$ Weighted Average Priority Areas Score - Deductions
Overall Accountability Score $=75.6-0=75.6$
Rural Middle School's Overall Accountability Score is 75.6, putting it into the Exceeds Expectations category.

Overall Accountability Score Worksheet

Introduction

This worksheet requires that you have calculated scores found in the School Report Card Detail for each of the four Priority Areas that apply to your school:

- Student Achievement: score out of 100 points
- Student Growth: score out of 100 points
- Closing Gaps: score out of 100 points
- On-Track and Postsecondary Readiness: score out of 100 points
- Attendance or Graduation: Score out of 80 points
- $3^{\text {rd }}$ Grade Reading, $8^{\text {th }}$ Grade Mathematics, ACT Participation/Performance: Total out of 20 points

It also requires that you have data on which Student Engagement Indicator deductions, if any, are applied to your school.

Instructions

Work through the worksheet using data you have already calculated for the school. Once you have calculated the Overall Accountability Score, use it to determine the accountability rating. In the future, DPI plans for the level and type of support to align with Rating Categories:

| Accountability

 Rating Category | Accountability Score Range | | Level of Support
 (Future) |
| :--- | :---: | :---: | :---: | :---: |
| | Minimum | Maximum | |
| Significantly Exceeds Expectations | 83 | 100 | Rewards and Replication |
| Exceeds Expectations | 73 | 82.9 | Rewards and Replication |
| Meets Expectations | 63 | 72.9 | Local Improvement Efforts |
| Meets Few Expectations | 53 | 62.9 | State Support |
| Fails to Meet Expectations | 0 | 52.9 | State Support |

Worksheet

Step 1: Combine Student Achievement, Student Growth, and Closing Gaps Priority Areas

Leave a box blank if there is no score to enter.
(1a) Enter the Student Achievement score, if applicable
(1b) Enter the Student Growth score, if applicable
(1c) Enter the Closing Gaps score, if applicable
(1d) Add boxes 1a through 1c
(1e) How many boxes in 1a through 1c have scores?
Average: (1f) Divide 1d by 1e

Step 2: Combine Result with On-Track and Postsecondary Readiness Priority Area

Leave a box blank if there is no score to enter.
(2a) Enter the Attendance or Graduation score
(2b) If maximum score for Attendance or Graduation is 100, multiply 2 a by 0.8 , otherwise multiply 2 a by 1.0 .
(2c) Enter the $3^{\text {rd }}$ Grade Reading score, if applicable
(2d) Enter the $8^{\text {th }}$ Grade Mathematics score, if applicable
(2e) Enter the ACT Participation/Performance score, if applicable
(2f) Add $2 b$ through $2 e$ for On-Track score
$(2 \mathrm{~g})$ Enter the value from 1 f in Step 1
(2h) If $2 \mathrm{c}, 2 \mathrm{~d}$, and 2 e all are blank, enter 3.2; else enter 3
(2i) Multiply 2 g by 2 h
(2j) Add $2 f$ and $2 i$

Step 3: Apply Student Engagement Indicator Deductions

(3a) Enter the Weighted average Priority Areas score from 2k in Step 2
(3b) What was the school's lowest group participation rate (to the nearest percent)?
(3c) If 3 b is less than 95% but at least 85%, enter -5 ; if 3 b is less than 85%, enter -10
(3d) Did the school's dropout rate meet the goal (<6\%)?
\square YesNo If "No," enter -5
(3e) Did the school's absenteeism rate meet the goal (<13\%)?YesNo If "No," enter -5 Overall Accountability Score: (3f) Add boxes 3a, 3c, 3d, and 3e
$3 f$

Calculating a Score for the Student Achievement Priority Area

The Student Achievement Priority Area is designed to show how well the students in a school have learned the knowledge and skills they are supposed to develop. DPI uses assessment data over the past three years to build a score, with more recent years having more effect on the score. Student Achievement is a points-based measure that gives credit for achievement across multiple proficiency levels.

Background

The simplest way to measure student achievement with assessment results, as mandated in the federal No Child Left Behind Act of 2001, is by the percentage of students scoring at or above the proficient level. The definition of "proficient" for the Wisconsin Knowledge and Concepts Examination (WKCE) was originally developed in 1997 through a detailed process involving educators and testing professionals; a similar process was used in 2007 for the Wisconsin Alternate Assessment for Students with Disabilities (WAA-SwD). Wisconsin has achieved high statewide proficiency rates under that definition for many years, but other assessments found different results. For example, the 2010-11 National Assessment of Educational Progress (NAEP) found 47 percent of Wisconsin $4^{\text {th }}$ graders scoring proficient in mathematics, whereas the WKCE and WAA-SWD found 79 percent proficient.

As part of developing this accountability system, DPI has set college and career readiness benchmarks based on NAEP cut scores, thus moving to higher proficiency standards. We could not make a similar change with the WAA-SwD because that test is constructed differently, but the new Dynamic Learning Maps assessment to be introduced in 201415 will reflect these higher expectations.

One of the consequences of this decision is that many students we formerly considered proficient are now scoring at lower achievement levels. To ensure schools are treated fairly, the Student Achievement measure allows students to earn points for their school based on their achievement level:

- Basic level: $\mathbf{0 . 5}$ points
- Proficient level: 1 point
- Advanced level: $\mathbf{1 . 5}$ points

It also incorporates three years of data to account for variation in year-to-year results, weighting the most recent years more heavily.

Reading the Report Card Detail

To arrive at a Student Achievement score, separate scores for reading and mathematics are calculated first and then added together. Tables for reading and mathematics in the student achievement section show the count of students scoring at each performance level over the last three years. Consider the following data on reading achievement for a sample school, which we will use throughout this walkthrough:

Sample Elementary \| Student Achievement - Reading										
Performance Level	Points Multiplier	2010-11			2011-12			2012-13		
		Students		Points	Students		Points	Students		Points
		Count	Percent		Count	Percent		Count	Percent	
Advanced	1.5	22	16.3\%	33	22	17.2\%	33	21	16.9\%	31.5
Proficient	1	35	25.9\%	35	34	26.6\%	34	41	33.1\%	41
Basic	0.5	37	27.4\%	18.5	38	29.7\%	19	33	26.6\%	16.5
Minimal Performance	0	41	30.4\%	0	34	26.6\%	0	29	23.4\%	0
Total Tested	-	135	100.0\%	86.5	128	100.0\%	86	124	100.0\%	89

This table shows that 135 students were tested at this school in 2010-11, with 22 scoring Advanced, 35 scoring Proficient, 37 scoring Basic, and 41 scoring Minimal Performance. Counts for 2011-12 and 2012-13 are similarly displayed. This table also shows percent of students scoring in each performance category in 2010-11, with 16.3\% scoring Advanced, 25.9% scoring Proficient, 27.4% scoring Basic, and 30.4% scoring Minimal Performance. Percentages for 2011-12 and 2012-13 are similarly displayed. Points and Points Multipliers for each performance level are also displayed.

Student Achievement Walkthrough

This walkthrough guides the user through determination of a Student Achievement score in a single content area (reading). To determine an overall Student Achievement score, the process is repeated for the other content area (mathematics) and the two content area scores are added.

Throughout this walkthrough we use three terms to describe the year of data used in each step:

- "Prior Year 2" means the left-most school year shown on the report card. In this example, it refers to 2010-11.
- "Prior Year 1" means the center school year shown on the report card. In this example, it refers to 2011-12.
- "Current Year" means the right-most school year shown on the report card. In this example, it refers to 2012-13.

Step 1: Assign and Average Points

The first step is to assign points for Student Achievement and take an average for each year. Students scoring Advanced are assigned 1.5 points each; students scoring Proficient, 1 point; and students scoring Basic, 0.5 points. Students scoring Minimal Performance are assigned zero points. These point values are multiplied by the number of students to determine the Points awarded in each category. Then the Points for each year are added together, and divided by the total number of students tested to determine an average. We cap each year's average at a maximum of 1 .

Performance Level	Points Multiplier	2010-11			2011-12			2012-13		
		Students		Points	Students		Points	Students		Points
		Count	Percent		Count	Percent		Count	Percent	
Advanced	1.5	22	16.3\%	33	22	17.2\%	33	21	16.9\%	31.5
Proficient	1	35	25.9\%	35	34	26.6\%	34	41	33.1\%	41
Basic	0.5	37	27.4\%	18.5	38	29.7\%	19	33	26.6\%	16.5
Minimal Performance	0	41	30.4\%	0	34	26.6\%	0	29	23.4\%	0
Total Tested	-	135	100.0\%	86.5	128	100.0\%	86	124	100.0\%	89

Calculation

Prior Year 2 Average $=86.5 / 135=\mathbf{0 . 6 4 1}$
Prior Year 1 Average $=86 / 128=\mathbf{0 . 6 7 2}$
Current Year Average $=89 / 124=\mathbf{0 . 7 1 8}$

Step 2: Calculate Annual Weights

Next, we calculate a weight for each year's average which takes into account (1) year-to-year fluctuations in numbers of students tested and (2) that more recent years should count more heavily. To do this, we calculate a weight that is the
product of a "students tested weight"-the number of students tested that year divided by the average tested across all three years-and a "year weight" that is higher for more recent years.

The values that go into each year's weight depend upon how many years of data are available that meet our cell size (minimum number of students with data) of 20:

- Three years available: "Year weights" are 1.5 for the current year, 1.25 for the prior year, and 1 for the year before that; the number of students tested is averaged across all three years.
- Two years available: "Year weights" are 1.5 for the current year and 1 for the prior year; the number of students tested is averaged across only the current and prior years.
- One year available: The current year weight is 1 .

Formulas

Prior Year 2 Weight $=1 \times \frac{\text { Prior Year } 2 \text { Number Tested }}{\text { Average Number Tested }}$
Prior Year 1 Weight $=1.25 \times \frac{\text { Prior Year } 1 \text { Number Tested }}{\text { Average Number Tested }}$
Current Year Weight $=1.5 \times \frac{\text { Current Year Number Tested }}{\text { Average Number Tested }}$

Calculation

Prior Year 2 Weight $=1 \times \frac{135}{(135+128+124) / 3}=\mathbf{1 . 0 4 7}$
Prior Year 1 Weight $=1.25 \times \frac{128}{(135+128+124) / 3}=\mathbf{1 . 2 4 0}$
Current Year Weight $=1.5 \times \frac{124}{(135+128+124) / 3}=\mathbf{1 . 4 4 2}$

Step 3: Combine Points and Weights

In step three we multiply the averages determined in Step 1 by the weights calculated in Step 2.

Formulas

Prior Year 2 Score $=$ Prior Year 2 Average \times Prior Year 2 Weight
Prior Year 1 Score $=$ Prior Year 1 Average \times Prior Year 1 Weight
Current Year Score $=$ Current Year Average \times Current Year Weight

Calculation

Prior Year 2 Score $=0.641 \times 1.047=\mathbf{0 . 6 7 1}$

Prior Year 1 Score $=0.672 \times 1.240=\mathbf{0 . 8 3 3}$
Current Year Score $=0.718 \times 1.442=\mathbf{1 . 0 3 5}$
Step 4: Calculate Content Area Achievement Score
The achievement score for this content area is calculated by adding the scores from Step 3, dividing the result by the sum of the weights determined in Step 2, and then multiplying the final value by 50 (creating a content area score out of 50 points).

Formula

$$
\text { Content Area Achievement Score }=\frac{\text { Prior Year } 2 \text { Score }+ \text { Prior Year } 1 \text { Score }+ \text { Current Year Score }}{\text { Prior Year } 2 \text { Weight }+ \text { Prior Year } 1 \text { Weight }+ \text { Current Year Weight }} \times 50
$$

Calculation

$$
\text { Content Area Achievement Score }=\frac{0.671+0.833+1.035}{1.047+1.240+1.442} \times 50=\mathbf{3 4 . 0}
$$

This school's Student Achievement score for this content area is 34.0.

Student Achievement Priority Area Worksheet

Introduction

This worksheet has two parts, one for reading and one for mathematics. Both parts require you to copy data from the Student Achievement detail on page 2 of the School Report Card Detail. Be sure to use the counts, not the percentages. Note that the score calculated here may not exactly match the report card due to rounding differences. Here is a key to the data needed to complete the worksheet:

Performance Level	Points Multiplier	2010-11			2011-12			2012-13		
		Students		Points	Students		Points	Students		Points
		Count	Percent		Count	Percent		Count	Percent	
Advanced	1.5	22	16.3\%	33	22	17.2\%	33	21	16.9\%	31.5
Proficient	1	35	25.9\%	35	34	26.6\%	34	41	33.1\%	41
Basic	0.5	37	27.4\%	18.5	38	29.7\%	19	33	26.6\%	16.5
Minimal Performance	0	41	30.4\%	0	34	26.6\%	0	29	23.4\%	0
Total Tested		135				100.0\% D 86 E 124			100.0\% F 89	

Letters shown on the key are used to help identify data on the worksheet. Tables for reading and mathematics achievement have the same layout. Note: In the worksheet, "Prior Year 2" means the left-most year shown (2010-11 in the key), "Prior Year 1" the center year shown (2011-12 in the key), and "Current Year" the right-most year shown (2012-13 in the key).

Instructions

Work through the individual reading and mathematics worksheets step by step, entering data from the school report card where appropriate. When both are complete, add both content area scores to determine the school's score for the Student Achievement Priority Area:

| Reading Achievement Score: | ____ out of 50 points |
| :--- | :--- | :--- |
| Mathematics Achievement Score: | |
| Student Achievement Priority Area Score: 50 points | |

Reading Achievement Worksheet

Step 1: Assign and Average Points

If a year does not have data shown, leave that year's boxes blank.
Prior Year 2 Average
(1a) Total points earned (B)
(1b) Count of tested students (A)
(1c) Is 1a greater than 1b?
1c
\square Yes \square No
Average: (1d) If 1 c is "Yes," enter 1 ; if 1 c is "No," divide 1 a by 1 b
Prior Year 1 Average
(1e) Total points earned (D)
(1f) Count of tested students (C)
(1g) Is 1e greater than 1 f ?
Average: (1h) If 1 g is "Yes," enter 1 ; if 1 g is "No," divide 1e by 1 f
1h
Current Year Average
(1i) Total points earned (F)
(1j) Count of tested students (E)
(1k) Is $1 i$ greater than $1 j$?

1k
\square Yes \square No

Average: (1l) If 1 k is "Yes," enter 1 ; if 1 k is "No," divide 1 i by 1 j

Step 2: Calculate Annual Weights

Average Number Tested
(2a) Prior Year 2 count of tested students (A) - leave blank if not shown
(2b) Prior Year 1 count of tested students (C) - leave blank if not shown
(2c) Current Year count of tested students (E)
(2d) Add 2a through 2c
(2e) How many of 2 a through 2 c have values?
Average count of tested students: (2f) Divide 2d by $2 e$

Prior Year 2 Weight
$(2 \mathrm{~g})$ Is 2 a blank?
2 gYesIf "Yes," move on to the "Prior Year 1 Weight" section.
(2h) Enter the count from $2 a$
(2i) Enter the average from $2 f$
Prior Year 2 Weight: (2 j) Divide 2 h by 2 i

Prior Year 1 Weight
(2k) Is $2 b$ blank? $2 k \square$ Yes \square No If "Yes," move on to the "Current Year Weight" section.
(2l) Enter the count from 2b
($2 m$) Enter the average from $2 f$
(2n) Divide 21 by $2 m$
(2o) If 2 g is "Yes," enter 1 ; if 2 g is "No," enter 1.25
Prior Year 1 Weight: (2p) Multiply $2 n$ by 20

Current Year Weight

(2q) Are both $2 a$ and $2 b$ blank?
2qYesNo If "Yes," skip to 2t
(2q) Enter the count from 2c
(2r) Enter the average from $2 f$
(2s) Divide 2q by $2 r$
Current Year Weight: (2t) If $2 q$ is "No," multiply $2 s$ by 1.5; otherwise, enter 1

Step 3: Combine Points and Weights

If a year does not have data, leave that year's boxes blank.
Prior Year 2 Score
(3a) Enter the average from 1d
(3b) Enter the weight from 2 j
Prior Year 2 Score: (3c) Multiply 3a by 3b

Prior Year 1 Score
(3d) Enter the average from 1 h
(3e) Enter the weight from $2 p$
Prior Year 1 Score: (3f) Multiply 3d by 3e

Current Year Score
(3g) Enter the average from 11
(3h) Enter the weight from 2t
Current Score: (3i) Multiply 3g by 3h

Step 4: Calculate Reading Achievement Score
(4a) Enter the score from 3c
(4b) Enter the score from $3 f$
(4c) Enter the score from 3i
(4d) Add 4a through 4c

$4 a$
4 b
4 c
4 d

(4e) Enter the weight from 2 j
(4f) Enter the weight from $2 p$
(4g) Enter the weight from 2 t
(4h) Add 4 e through 4 g
(4i) Divide 4d by 4h
Reading Achievement Score: (4j) Multiply 4i by 50

Mathematics Achievement Worksheet

Step 1: Assign and Average Points
If a year does not have data shown, leave that year's boxes blank.
Prior Year 2 Average
(1a) Total points earned (B)
(1b) Count of tested students (A)
(1c) Is 1a greater than 1 b ?
1c
\square Yes \square No
Average: (1d) If 1 c is "Yes," enter 1 ; if 1 c is "No," divide 1 a by 1 b
Prior Year 1 Average
(1e) Total points earned (D)
(1f) Count of tested students (C)
(1g) Is 1e greater than 1 f ?

1 g \square Yes \square No Current Year Average
(1i) Total points earned (F)
(1j) Count of tested students (E)
(1k) Is $1 i$ greater than $1 j$?

1k\square No

Average: (1I) If 1 k is "Yes," enter 1 ; if 1 k is "No," divide 1 i by $1 \mathrm{j} \quad 1$

Step 2: Calculate Annual Weights

Average Number Tested
(2a) Prior Year 2 count of tested students (A) - leave blank if not shown
(2b) Prior Year 1 count of tested students (C) - leave blank if not shown
(2c) Current Year count of tested students (E)
(2d) Add 2a through 2c
(2e) How many of 2 a through 2 c have values?
Average count of tested students: (2f) Divide 2d by $2 e$

Prior Year 2 Weight
$(2 \mathrm{~g})$ Is 2a blank?
2 gYesIf "Yes," move on to the "Prior Year 1 Weight" section.
(2h) Enter the count from $2 a$
(2i) Enter the average from $2 f$
Prior Year 2 Weight: (2 j) Divide 2 h by 2 i

Prior Year 1 Weight
(2k) Is $2 b$ blank? $2 k \square$ Yes \square No If "Yes," move on to the "Current Year Weight" section.
(2l) Enter the count from $2 b$
($2 m$) Enter the average from $2 f$
(2n) Divide 21 by $2 m$
(2o) If 2 g is "Yes," enter 1 ; if 2 g is "No," enter 1.25
Prior Year 1 Weight: (2p) Multiply $2 n$ by 20

Current Year Weight

(2q) Are both $2 a$ and $2 b$ blank?
2qYesNo If "Yes," skip to 2t.
(2q) Enter the count from 2c
(2r) Enter the average from $2 f$
(2s) Divide 2q by $2 r$
Current Year Weight: (2t) If $2 q$ is "No," multiply $2 s$ by 1.5; otherwise, enter 1

Step 3: Combine Points and Weights

If a year does not have data, leave that year's boxes blank.
Prior Year 2 Score
(3a) Enter the average from 1d
(3b) Enter the weight from 2 j
Prior Year 2 Score: (3c) Multiply 3a by 3b

Prior Year 1 Score
(3d) Enter the average from 1 h
(3e) Enter the weight from $2 p$
Prior Year 1 Score: (3f) Multiply 3d by 3e

Current Year Score
(3g) Enter the average from 11
(3h) Enter the weight from 2t
Current Score: (3i) Multiply 3g by 3h

Step 4: Calculate Mathematics Achievement Score
(4a) Enter the score from 3c
(4b) Enter the score from $3 f$
(4c) Enter the score from 3i
(4d) Add 4a through 4c

$4 a$
$4 b$
$4 c$
$4 d$

(4e) Enter the weight from 2 j
(4f) Enter the weight from 2 p
(4g) Enter the weight from 2 t
(4h) Add 4 e through 4 g
(4i) Divide 4d by 4h Mathematics Achievement Score: (4j) Multiply $4 i$ by 50

Calculating a Score for the Student Growth Priority Area

The Student Growth Priority Area uses a measurement tool to evaluate schools on student progress toward higher performance levels and student decline below the Proficient level. This tool allows us to set target growth trajectories for nearly every student in Wisconsin and compare their actual growth to those targets. This measure is designed so that schools can earn the most credit for helping students farthest behind their peers accelerate their growth. At the same time, schools are not penalized for high levels of achievement.

Background

At the foundation of the Student Growth score are growth measures called Student Growth Percentiles (SGPs). While the mathematics behind SGPs are complex, the concept is fairly straightforward. When we look at one student's WKCE scores over time, we can find many other students with similar scores over time, and we can establish an academic peer group of all these students to help us make comparisons. An SGP is a percentile rank that compares one student's change in WKCE scores from last year to this year to the growth of the student's peers. SGPs allow us to describe an individual student's growth across the full range of performance levels, rather than focusing on growth to one specific level. Wisconsin schools already use student level SGP reports that both describe individual students' past growth and project ranges of low, typical, and high growth for students in the next year.

For the Student Growth Priority Area, we employ the same statistic, the SGP, to make a different sort of projection than is shown on our student level SGP reports. For Student Growth, we choose three specific performance targets and use the SGP methodology to project the rate of growth a particular student would have to exhibit to reach each of those targets. The targets in question are straightforward: attaining the threshold scores for the Basic, Proficient, and Advanced WKCE performance levels within a period of three years. These target SGPs, or target growth trajectories, provide us with benchmarks against which we can compare a student's actual growth.

Setting target trajectories is possible because we have a large body of historical, student level, test score data. For any individual student, we can pull out of this body of data just the data for a peer group of students with similar test score histories up to the current grade of the student in question. Many of these peers drawn from our historical data set also have test scores for grades that our current student has yet to get to, and it is these data that allow us to project the rates of growth our student will need in order to reach different performance levels within the given three year measurement period. These rates of growth are our target SGPs or target growth trajectories. The box titled "A Closer Look at Target Growth Trajectories" provides a more specific illustration of how target growth trajectories are derived and used.

Specifically, we calculate, for every student with growth data, target growth trajectories for the Basic, Proficient, and Advanced levels, based on the student's score in the previous year. For a performance level above a student's current level, the target trajectory is the most lenient SGP-i.e., slowest pace of improvement-out of the SGPs associated with improving to that level in one, two, and three years' time. (Usually, but not always, the most lenient SGP will be the one related to the student taking a full three years to grow to the higher level.) For a performance level below a student's current level, it is the most lenient SGP-i.e., most rapid decline - out of the SGPs associated with declining to that level
in one, two, and three years' time. (Usually, the most lenient SGP will be one the related to the student declining to the lower level after just one year.)

In the current year, we compare each student's actual SGPs in reading and math against the student's target SGPs. If, for example, a student who was below the Proficient level produces an SGP that exceeds his target SGP for the Proficient level, then we can say that this student is on a trajectory to reach the Proficient level-even if the change in levels hasn't happened yet. Using a "value table," we assign positive points if the student's actual SGP equals or exceeds his target SGPs for higher levels and negative points if the student was above the Proficient level but has an actual SGP that falls below his target SGP for the Proficient level. Points earned by all a school's students are accumulated to calculate that school's Student Growth score.

Because of the fall-to-fall testing cycle, for this Priority Area a school's students are those that it enrolled in the prior year. However, a student's Full Academic Year (FAY) status is determined in the current year.

A Closer Look At Target Growth Trajectories

Consider a sixth-grade student who last year, as a fifth grader, was rated Proficient in Reading, with a score of 515. (This illustration uses the NAEP-based WKCE performance levels.) Let us focus on the target of attaining the Advanced performance level within three years of that fifthgrade starting point. To reach the Advanced level in Reading as a sixth grader, our student would need to score 573. To reach Advanced as a seventh grader, she would need a 590, and to reach it as an eighth grader, she would need a 613. Once we have the student's sixth-grade test results, it will be obvious whether or not she reached the target in the first year of the three year window. But by using the SGP to establish target growth trajectories, we will also be able to tell whether or not she is on a growth path to meeting the target by the second year or the third year.

To derive the target trajectory, we draw upon our body of historical data to identify a peer group for our student comprised of students older than she who have already progressed ahead of her through the sixth, seventh, and eighth grades but who had the same or similar track record of Reading scores from the third through the fifth grade. Using the sixth-grade through eighthgrade test data for this population of older peers, we can identify three specific SGPs: the SGP for a member of this peer group who just made it to the threshold of the Advanced level as a sixth grader, the SGP for a member who made it as a seventh grader, and the SGP for one who made it as an eighth grader. The most lenient (lowest) of these becomes our student's target SGP or growth trajectory for the Advanced level. (For intuitively apparent reasons, the SGP associated with meeting a higher target in the third year will usually be the most lenient, as is true for this example; however, depending on a student's situation, infrequently the first or second year projected SGP may be the most lenient.)

When we receive our student's sixth-grade Reading score, we can calculate her individual SGP characterizing her fifth-grade-to-sixth-grade growth in the context of all current sixth graders. Now, we can compare her actual SGP with her target SGP. If it meets or surpasses the target, we can say that this student is on a trajectory to improve to the Advanced level.

For a different student who was at the Basic level in Reading in fifth grade, we would follow the same procedure to determine a target trajectory for the Proficient level as well as Advanced, and for another student who started at the Minimal level in fifth grade, we would also determine a target for the Basic level.

So far we have talked about growth trajectories to higher levels. But for the Student Growth Priority Area, being on a path to drop below the Proficient level also matters. Therefore, for our student, the other important target to determine besides the target growth trajectory to Advanced is the decline trajectory to scoring below the threshold for Proficient, which is 525 for sixth graders, 535 for seventh graders, and 548 for eighth graders. The most lenient of the SGPs relating to our student's next three years becomes her target decline trajectory. (In this case, as will be the case for most decline trajectories, decline below the target in one year's time yields the most lenient SGP.)

Reading the Report Card Detail

To arrive at a Student Growth score, separate scores for reading and mathematics are calculated first and then added together. The four-by-four grids for reading and mathematics shown in the Student Growth detail summarize the comparisons of actual SGPs to target trajectories for all students in a school. Consider the following data on reading growth for a sample school, which we will use throughout the walkthrough:

Sample Elementary - Reading Growth					
Reading Growth Score is based on the students tested in fall 2011 with data for growth to fall 2012.					
Starting Level		Growth/Decline Trajectory			
		Min. Perf.	Basic	Proficient	Advanced
Minimal Performance	33	10	16	6	1
	19.2\%	5.8\%	9.3\%	3.5\%	0.6\%
Basic	66	6	46	11	3
	38.4\%	3.5\%	26.7\%	6.4\%	1.7\%
Proficient	60	1	16	34	9
	34.9\%	0.6\%	9.3\%	19.8\%	5.2\%
Advanced	13	0	0	7	6
	7.6\%	0.0\%	0.0\%	4.1\%	3.5\%

On the left, under "Starting Level," students at Sample Elementary School (with WKCE growth data from fall 2011 to fall 2012 to calculate SGPs and target trajectories over the next three years) are grouped by their fall 2011 performance levels. To the right, they are grouped further based on whether or not their actual growth met the target trajectory for a particular level (or under Minimal Performance, whether they fell below the Basic trajectory).

Example (shown with the bold border): 66 students started at the Basic level in fall 2011. Of those, 11 met the Proficient target trajectory but not the Advanced target trajectory.

The layout of the table reflects how these comparisons are used to calculate a school's Student Growth score. The green/bold highlighted cells show students whose actual growth put them on a trajectory toward a higher performance level, and the red/italic highlighted cells show those whose actual decline put them on a trajectory to fall below Proficient.

Student Growth Walkthrough

This walkthrough guides the user through determination of a Student Growth score in a single content area, reading, for Sample Elementary School. To determine the Student Growth Priority Area score, the process is repeated for mathematics, and the two content area scores are added.

Step 1: Assign Growth and Decline Points

The first step is to assign points for each student's comparison of actual SGP to target trajectories. We use two basic principles to assign points:

1. Students earn +1 point for each higher level they are on a trajectory toward attaining.
2. Students earn -1 point if they are on a trajectory to decline below Proficient.

These principles can be combined to create a value table showing how many points a student can earn for each combination of starting level and target trajectory met:

Starting Level	Growth/Decline Trajectory			
	Min. Perf.	Basic	Proficient	Advanced
Min. Perf.	0	+1	+2	+3
Basic	0	0	+1	+2
Proficient	-1	-1	0	+1
Advanced	-1	-1	0	0

By applying the value table to our sample school's report card data, we can figure out how many points students earned:

Starting Level		Growth/Decline Trajectory			
		Min. Perf.	Basic	Proficient	Advanced
Minimal Performance	33 students	10 students	16 students	6 students	1 student
		0 points	+16 points	+12 points	+3 points
Basic	66 students	6 students	46 students	11 students	3 students
		0 points	0 points	+11 points	+6 points
Proficient	60 students	1 student	16 students	34 students	9 students
		-1 point	-16 points	0 points	+9 points
Advanced	13 students	0 students	0 students	7 students	6 students
		0 points	0 points	0 points	0 points

Total Growth Points: +57 points

Total Decline Points: -17 points

Step 2: Calculate Growth and Decline Factors

One thing to note about Step 1 is that because of the way we look at student growth, certain students cannot earn points-Advanced students cannot earn positive growth points since they have no trajectory to a higher performance level, and Minimal Performance or Basic students cannot earn negative decline points since they are already below Proficient. We incorporate Advanced students into growth and Minimal Performance or Basic students into decline by
calculating growth and decline factors, values that represent the average numbers of points earned by students who can earn points, scaled by the percentages of students who cannot.

Definitions

Note: Within definitions, a performance level (Minimal Performance, Basic, Proficient, or Advanced) refers to the starting level in the growth detail table, not the trajectory.

$$
\begin{aligned}
& \text { Average Growth Points }=\frac{\text { Total Growth Points }}{\text { Number Min. Perf. }+ \text { Number Basic }+ \text { Number Proficient }} \\
& \text { Percent Advanced }=\frac{\text { Number Advanced }}{\text { Total Students with Growth Data }} \\
& \text { Average Decline Points }=\frac{\text { Total Decline Points }}{\text { Number Proficient }+ \text { Number Advanced }} \\
& \text { Percent Min. Perf. or Basic }=\frac{\text { Number Min. Perf. }+ \text { Number Basic }}{\text { Total Students with Growth Data }}
\end{aligned}
$$

Formulas

Growth Factor $=$ Average Growth Points + Percent Advanced

- (Average Growth Points \times Percent Advanced)

Decline Factor $=$ Average Decline Points - (Average Decline Points \times Percent Min. Perf. or Basic)
Note: The formulas are set up this way so that a school with all Advanced students receives full credit for growth (Growth Factor $=1$) and a school with all Minimal Performance or Basic students receives no penalty for decline (Decline Factor = 0).

Calculation

$$
\text { Average Growth Points }=\frac{+57 \text { points }}{33 \text { Min. Perf. students }+66 \text { Basic students }}=0.358
$$

Percent Advanced $=\frac{13 \text { Advanced students }}{172 \text { total students }}=0.076$
Growth Factor $=0.358+0.076-(0.358 \times 0.076)=\mathbf{0 . 4 0 7}$
Average Decline Points $=\frac{-17 \text { points }}{60 \text { Proficient students }+13 \text { Advanced students }}=-0.233$
Percent Min. Perf. or Basic $=\frac{33 \text { Min. Perf. students }+66 \text { Basic students }}{172 \text { total students }}=0.576$
Decline Factor $=-0.233-(-0.233 \times 0.576)=-\mathbf{0 . 0 9 9}$

Step 3: Combine Growth and Decline Factors into Total Factor

Once the growth and decline factors have been calculated, they are combined into a single value, the total factor. The basic formula for the total factor is:

$$
\text { Total Factor }=\text { Growth Factor }+ \text { Decline Factor }+0.5
$$

Why add the growth and decline factors to 0.5 ? The reason is to create a value like a rate that we can use to determine a score. This makes more sense if we illustrate the calculation for our sample school:

$$
\text { Total Factor }=0.407+(-0.099)+0.5=\mathbf{0 . 8 0 8}
$$

The total factor formula puts the school on a range between zero and one. A total factor of 0.5 represents a school where student growth and decline are balanced. As the total factor moves away from 0.5 it shows that either growth or decline is more predominant:

We can show the total factor calculation on this number line:

A total factor of 0.808 shows that our sample school has quite a bit more growth than decline.
The basic equation above can give a value for the total factor of less than zero or greater than one. Therefore, we add two conditions that restrict the final value to a zero-to-one range:

If Growth Factor + Decline Factor $+0.5<0$, then Total Factor $=0$
If Growth Factor + Decline Factor $+0.5>1$, then Total Factor $=1$
Otherwise, Total Factor $=$ Growth Factor + Decline Factor +0.5

Step 4: Calculate a 75\% Confidence Interval

As with any measure, there is some statistical uncertainty in the calculation of a Student Growth score. One way to address this uncertainty is to calculate a confidence interval, a value that expresses how the number of students in our measure creates uncertainty-fewer students leads to more uncertainty. Calculating a confidence interval can be tricky because it does not work well with values close to zero or one, or for very small numbers of students. Using a confidence interval is a necessary statistical safeguard, but it adds a layer of complexity to the calculation.

N and P

A rule of thumb for confidence intervals is that the product of N (the number of items in a sample-in this case, the number of students) and P (the percentage or rate calculated) should be at least 5 , and the product of N and ($1-P$) should also be at least 5 . When either of these products is less than 5 , we substitute a new value of P that meets the rule of thumb.

Example 1: $N=20 ; P=0.6 . N \times P=20 \times 0.6=12 ; N \times(1-P)=20 \times 0.4=8$.
We're OK!
Example 2: $N=20 ; P=0.1 . ~ N \times P=20 \times 0.1=2 ; N \times(1-P)=20 \times 0.9=18$.
Fails the $N \times P$ test! Solution: $P_{N e w}=5 / N=5 / 20=\mathbf{0 . 2 5}$.
Example 3: $N=20 ; P=0.8 . N \times P=20 \times 0.8=16 ; N \times(1-P)=20 \times 0.2=4$.
Fails the $\mathrm{N} \times(1-\mathrm{P})$ test! Solution: $P_{\text {New }}=1-(5 / N)=1-(5 / 20)=\mathbf{0} .75$.

Definitions

$N=$ Total number of students with growth data
$T F=$ Total Factor determined in previous step

Total Factor-CI = Total Factor used in confidence interval calculation:

$$
\begin{aligned}
& \text { If } N \times T F \geq 5 \text { and } N \times(1-T F) \geq 5 \text {, then Total Factor-CI }=T F \\
& \text { If } N \times T F<5 \text {, then Total Factor-CI }=5 / N \\
& \text { If } N \times(1-T F)<5 \text {, then Total Factor-CI }=1-(5 / N)
\end{aligned}
$$

Formula

Confidence Interval $=1.15 \times \sqrt{\frac{\text { Total Factor-CI } \times(1-\text { Total Factor-CI })}{\text { Total number of students with growth data }}}$

Calculation

$N=172 ; T F=0.808$
$N \times T F=172 \times 0.808=139 ; N \times(1-T F)=172 \times 0.192=33$
Passes both tests, so Total Factor-CI $=T F=0.808$

Confidence Interval $=1.15 \times \sqrt{\frac{0.808 \times 0.192}{172}}=\mathbf{0 . 0 3 5}$

Note: A confidence interval is a value that is added or subtracted to create a range. In this example, the confidence interval means we are reasonably confident that the true growth score for these 172 students falls within a range from 0.773 to 0.843 (0.808 ± 0.035). As we will see in the next step, the top of this range-the maximum value we can reliably determine for the school-is used to determine the growth score.

Step 5: Determine the Content Area Student Growth Score

Now that we have the total factor and the 75 percent confidence interval, we can determine this school's Student Growth score in reading. The formula is complex in order to put Student Growth scores on a similar scale as Student Achievement. Like the WKCE, the new school accountability system includes different kinds of data and different scores that carry different meanings; it is necessary to align components like Student Growth to a common scale.

Formula

Content Area Student Growth Score $=([($ Total Factor + Confidence Interval $) \times 1.01]-0.16) \times 50$

Note: Adding the confidence interval to the total factor gives the highest reasonable value for growth within the 75 percent confidence interval. 1.01 and 0.16 are numbers that align Student Growth to the common scale based on Student Achievement scores. 50 sets the content area growth score out of 50 points.

Calculation

Content Area Student Growth Score $=([(0.808+0.035) \times 1.01]-0.16) \times 50=34.6$
Sample Elementary School's Student Growth score in reading is 34.6.

Student Growth Priority Area Worksheet

Introduction

This worksheet has two parts, one for reading and one for mathematics. Both parts require you to copy data from the Student Growth detail of the School Report Card Detail. Be sure to use the counts, not the percentages. Note that the score calculated here may not exactly match the report card due to rounding differences. Here is a key to the data needed to complete the worksheet:

Sample Elementary - Reading Growth

Reading Growth Score is based on the students tested in fall 2011 with data for growth to fall 2012.

Starting Level		Growth/Decline Trajectory			
		Min. Perf.	Basic	Proficient	Advanced
Minimal	B 33	10	F 16	G 6	H) 1
Performance	19.2\%	5.8\%	9.3\%	3.5\%	0.6\%
Basic	C 66	6	46	$1 \quad 11$	J 3
	38.4\%	3.5\%	26.7\%	6.4\%	1.7\%
Proficient	D 60	L 1	M 16	34	K 9
	34.9\%	0.6\%	9.3\%	19.8\%	5.2\%
Advanced	E 13	N 0	$0 \longdiv { 0 }$	7	6
	7.6\%	0.0\%	0.0\%	4.1\%	3.5\%

Letters shown on the key are used to help identify data on the worksheet. Note: Although the key shows an example for reading growth, the same components are used for mathematics growth as well.

Instructions

Work through the individual reading and mathematics worksheets step by step, entering data from the School Report Card Detail where appropriate. When both are complete, add both content area scores to determine the school's Student Growth Priority Area score:

Reading Student Growth Score: \qquad out of 50 points

Mathematics Student Growth Score:

Student Growth Priority Area Score:
\qquad out of 50 points
\qquad
\qquad out of 100 points

Reading Student Growth Score

Step 1: Assign Growth and Decline Points

Growth Points
(1a) Min. Perf. toward Advanced students (H)
(1b) Min. Perf. toward Proficient students (G)
(1c) Basic toward Advanced students (J)
(1d) Min. Perf. toward Basic students (F)
(1e) Basic toward Proficient students (I)
(1f) Proficient toward Advanced students (K)

Decline Points
(1h) Proficient toward Min. Perf. students (L)
(1i) Proficient toward Basic students (M)
(1j) Advanced toward Min. Perf. students (N)
(1k) Advanced toward Basic students (O)
(11) Total Decline Points: Add 1 h through 1 k (will be a negative number)

$x-1$	$=1 \mathrm{~h}$
$\times-1$	$=1 \mathrm{i}$
$\times-1=$	1 j
$-1=$	1 k

$x-1=$
11

Step 2: Calculate Growth and Decline Factors

Total Students with Growth Data
(2a) Number of Min. Perf. students (B)
(2b) Number of Basic students (C)
(2c) Number of Proficient students (D)
(2d) Number of Advanced students (E)
(2e) Total students: Add 2a through 2d

2a	
2b	
2c	
2d	
h 2d	2e

Growth Factor
(2f) Number of Min. Perf. students (B)
(2g) Number of Basic students (C)
(2h) Number of Proficient students (D)
(2i) Enter Total Growth Points from 1g
(2j) Add $2 f$ through $2 h$
(2k) Average Growth Points: $2 \mathrm{i} \div 2 \mathrm{j}$
(2g) Number of Advanced students (E)
(2h) Enter total students with growth data from 2 e

$$
\text { (2n) Percent Advanced: } 21 \div 2 m
$$

Decline Factor
(2p) Number of Proficient students (D)
(2q) Number of Advanced students (E)
(E)
(2r) Enter Total Decline Points from 11
(2s) Add 2p and 2q
(2t) Average Decline Points: $2 r \div 2 s$ (will be a negative number)
$2 t$
(2u) Number of Min. Perf. students (B)
(2v) Number of Basic students (C)

$2 u$
$2 v$

(2w) Add $2 u$ and $2 v$
(2x) Enter total students with growth data from 2e
(2y) Percent Min. Perf. or Basic: $2 w \div 2 x$

Step 3: Combine Growth and Decline Factors into Total Factor
(3a) Enter Growth Factor from 20
(3b) Enter Decline Factor from $2 z$
(3c) $3 a+3 b+0.5$
(3d) Is 3 c less than zero?
(3e) If 3 d is 'Yes,' enter 0
(3f) Is 3c greater than one?
(3 g) If 3 f is 'Yes,' enter 1
(3h) If 3d and $3 f$ are 'No,' enter 3c
(3i) Total Factor: Enter whichever one of $3 \mathrm{e}, 3 \mathrm{~g}$, or 3 h contains a value

Step 4: Calculate a 75\% Confidence Interval

(4a) Total students with growth data (A)
(4b) Enter Total Factor from 3i
(4c) Multiply 4a by 4b
(4d) Enter $5 \div 4 a$
(4e) Is 4 c less than 5 ?

(4f) If $4 e$ is 'Yes,' enter $4 d$

(4g) Enter 1 minus 4b
(4h) Multiply 4a by 4 g
(4i) Is 4 h less than 5 ?
(4 j) If 4 i is 'Yes,' enter ($1-4 \mathrm{~d}$)
(4k) If both 4 e and 4 i are 'No,' enter Total Factor from 4 b
(4I) Enter whichever one of $4 \mathrm{f}, 4 \mathrm{j}$, or 4 k contains a value
(4m) Enter 1 minus 4I
(4n) Multiply 41 by $4 m$
(4o) Divide 4n by 4a
(4p) Take the square root of 40
(4q) Confidence Interval: Multiply 4p by 1.15

Mathematics Growth Score

Step 1: Assign Growth and Decline Points

Growth Points
(1a) Min. Perf. toward Advanced students (H)
(1b) Min. Perf. toward Proficient students (G)
(1c) Basic toward Advanced students (J)
(1d) Min. Perf. toward Basic students (F)
(1e) Basic toward Proficient students (I)
(1f) Proficient toward Advanced students (K)

Decline Points
(1h) Proficient toward Min. Perf. students (L)
(1i) Proficient toward Basic students (M)
(1j) Advanced toward Min. Perf. students (N)
(1k) Advanced toward Basic students (O)
(11) Total Decline Points: Add 1 h through 1 k (will be a negative number)

$x-1$	$=1 \mathrm{~h}$
$\times-1$	$=1 \mathrm{i}$
$\times-1=$	1 j
$-1=$	1 k

$x-1=$
11

Step 2: Calculate Growth and Decline Factors

Total Students with Growth Data
(2a) Number of Min. Perf. students (B)
(2b) Number of Basic students (C)
(2c) Number of Proficient students (D)
(2d) Number of Advanced students (E)
(2e) Total students: Add 2a through 2d

2a	
2b	
2c	
2d	
h 2d	2e

Growth Factor
(2f) Number of Min. Perf. students (B)
(2g) Number of Basic students (C)
(2h) Number of Proficient students (D)
(2i) Enter Total Growth Points from 1g
(2j) Add $2 f$ through $2 h$
(2k) Average Growth Points: $2 \mathrm{i} \div 2 \mathrm{j}$
(2g) Number of Advanced students (E)
(2h) Enter total students with growth data from 2 e

$$
\text { (2n) Percent Advanced: } 21 \div 2 m
$$

Decline Factor
(2p) Number of Proficient students (D)
(2q) Number of Advanced students (E)
(E)
(2r) Enter Total Decline Points from 11
(2s) Add 2p and 2q
(2t) Average Decline Points: $2 r \div 2 s$ (will be a negative number)
$2 t$
(2u) Number of Min. Perf. students (B)
(2v) Number of Basic students (C)

$2 u$
$2 v$

(2w) Add $2 u$ and $2 v$
(2x) Enter total students with growth data from 2e
(2y) Percent Min. Perf. or Basic: $2 w \div 2 x$

Step 3: Combine Growth and Decline Factors into Total Factor
(3a) Enter Growth Factor from 20
(3b) Enter Decline Factor from $2 z$
(3c) $3 a+3 b+0.5$
(3d) Is 3 c less than zero?
(3e) If 3 d is 'Yes,' enter 0
(3f) Is 3c greater than one?
(3 g) If 3 f is 'Yes,' enter 1
(3h) If 3d and $3 f$ are 'No,' enter 3c
(3i) Total Factor: Enter whichever one of $3 \mathrm{e}, 3 \mathrm{~g}$, or 3 h contains a value

Step 4: Calculate a 75\% Confidence Interval

(4a) Total students with growth data (A)
(4b) Enter Total Factor from 3i
(4c) Multiply 4a by 4b
(4d) Enter $5 \div 4 a$
(4g) Enter 1 minus 4b
(4h) Multiply 4a by 4 g

(4i) Is 4 h less than 5 ?
(4j) If $4 i$ is 'Yes,' enter ($1-4 d$)
(4k) If both $4 e$ and $4 i$ are 'No,' enter Total Factor from 4b
(4I) Enter whichever one of $4 \mathrm{f}, 4 \mathrm{j}$, or 4 k contains a value
(4m) Enter 1 minus 4I
(4n) Multiply 41 by $4 m$
(4o) Divide 4n by 4a
(4p) Take the square root of 40
(4q) Confidence Interval: Multiply 4p by 1.15

Growth Score
(5a) Enter the Total Factor from 3i
(5b) Enter the Confidence Interval from 4q
(5c) Add 5a and 5b
(5d) Multiply 5c by 1.01
(5e) Enter 5d minus 0.16
(5f) Mathematics Student Growth Score: Multiply 5e by 50

$5 a$
$5 b$
$5 c$
$5 d$
$5 e$

Calculating a Score for the Closing Gaps Priority Area

The Closing Gaps Priority Area evaluates schools based on the rate of change in student achievement and graduation from one year to the next among key student groups. It focuses on the groups that experience statewide achievement gaps, rewarding schools that improve their performance at a rate greater than their statewide comparison group, closing the achievement gap.

Background

Wisconsin has a number of specific and significant gaps in reading and mathematics achievement and high school graduation. The Closing Gaps Priority Area is designed to look at improvement among particular student groups in a way that rewards schools for contributing to closing our achievement gaps. We evaluate schools' progress in closing achievement gaps using the point-based proficiency rate also used in the Student Achievement Priority Area, and we evaluate schools' progress in closing graduation gaps using the high school cohort graduation rate. In each area, we examine the change in the point-based proficiency rate over three time periods: the previous year to the current year, the year prior to the previous year to the previous year, and the year prior to the prior previous year to the prior previous year. Then, each school's "change in point-based proficiency rate" is contrasted with a statewide comparison group's "change in point-based proficiency rate" over the three time periods. The school target groups and comparison groups that are included in Closing Gaps scores are:

School Target Group	Statewide Comparison Group
American Indian \& Alaskan Native	White not Hispanic
Asian and Pacific Islander	White not Hispanic
Black not Hispanic	White not Hispanic
Hispanic	White not Hispanic
Students with disabilities	Students without disabilities
Economically disadvantaged	Not economically disadvantaged
Limited English proficient	English proficient
Supergroup*	Not in Supergroup*

* A "supergroup" is a group of students belonging to one or more of the three groups that are not racial or ethnic subgroups - students with disabilities, economically disadvantaged, or limited English proficient. We use a supergroup only when these individual groups do not have enough students to be considered in a school's Closing Gaps score, but when combined into the supergroup, they do. For example, in a school with 14 students with disabilities and 16 economically disadvantaged students, there are too few students in either group to be considered in Closing Gaps. However, if there are 25 students in the "students with disabilities/economically disadvantaged" supergroup (9 with disabilities, 11 economically disadvantaged, and 5 in both groups) then we can consider all of those students together in the supergroup.

In order to treat extreme circumstances two additional rules are applied: (1) if a school has a very high performing subgroup, the school is rewarded with the highest change score, which is a weighted average of the Gaps in Rates, achieved. (2) If a school has a positive gap in rates between their school and the state comparison group due to its
subgroup's performance declining less quickly than the state comparison's group's, the calculated gap in rates is replaced with a 0.

Reading the Report Card Detail

All of the Closing Gaps measures are based on comparisons between specific groups of students in the school and their peers in a statewide comparison group:

- For racial/ethnic groups we compare each targeted racial/ethnic group: American Indian or Alaska Native, Asian or Pacific Islander, Black (not Hispanic), and Hispanic students, to their White (not Hispanic) student counterparts. In report card calculations, a student is only counted in a single racial/ethnic group.
- For other groups, those where a student either is or is not a member: students with disabilities, economically disadvantaged students, and limited English proficient students, we compare the students within the group at the school level to those outside of it at the state level. A student may be counted in more than one of these groups.
- For supergroups (groups combining two or three groups outside of racial/ethnic group, used only when those individual groups do not have enough students for comparison but the supergroup does), we compare the students within the supergroup to those outside it. A student belonging to more than one of the combined groups is only counted once in the supergroup.

DPI uses a cell size of 20 as the minimum number of students in a subgroup required for Closing Gaps calculations. Closing Gaps calculations require two time periods of data, across three years. At a minimum, a school's subgroup must have achievement or graduation data for the current year and the two most recent years to be included in the calculation. A school must have at least one subgroup or supergroup that meets the minimum number of student requirement for at least 3 years in order to have a Closing Gaps score. "NA" is reported when subgroups do not meet the minimum number of students for the minimum number of years. The Closing Gaps data in the School Report Card Detail includes summary tables for Closing Achievement Gaps (one for reading and one for mathematics) and Closing Graduation Gaps. The layout of all three tables is the same, but the data are slightly different. Consider the following table showing Sample Elementary's performance in closing reading achievement gaps:

Sample Elementary

Closing Achievement Gaps - Reading | Score 34.8/50

	School Target Group Rates						State Comparison Group Rates				Gap in Rates			
	Students Tested			Change in Point-Based Proficiency Rate				Chan Pr	e in Poin ficiency	Based ate		$\simeq \sim$	\simeq	
	N	$\xrightarrow[\text { N }]{\text { O}}$	$\underset{\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\sim}}{N}$							$\begin{aligned} & \underset{\sim}{\sim} \\ & \stackrel{\sim}{\sim} \\ & \stackrel{\sim}{\bullet} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{\Delta} \\ & \hline \end{aligned}$				
American Indian or Alaska Native	NA	NA	NA	NA	NA	NA	White not Hispanic	NA						
Asian or Pacific Islander	NA	NA	NA	NA	NA	NA		NA						
Black not Hispanic	120	114	122	4.1\%	2.4\%	4.5\%		0.7\%	-0.1\%	0.9\%	3.4\%	2.5\%	3.6\%	0.032
Hispanic	45	50	43	-1.0\%	-7.3\%	5.4\%		0.7\%	-0.1\%	0.9\%	-1.7\%	-7.2\%	4.5\%	-0.014
Students with Disabilities	29	36	29	4.0\%	2.6\%	-4.3\%	Students without Disabilities	0.6\%	-0.2\%	0.8\%	3.4\%	2.8\%	-5.1\%	0
Economically Disadvantaged	153	144	148	5.3\%	-0.1\%	4.9\%	Not Economically Disadvantaged	1.0\%	0.2\%	0.7\%	4.3\%	-0.7\%	4.2\%	0.026
Limited English Proficient	NA	NA	NA	NA	NA	NA	English Proficient	NA						
"All 3" Supergroup	NA	NA	NA	NA	NA	NA	Not in "All 3" Supergroup	NA						
"SwD-ECD" Supergroup	NA	NA	NA	NA	NA	NA	Not in "SwDECD" Supergroup	NA						
"SwD-LEP" Supergroup	NA	NA	NA	NA	NA	NA	Not in "SwD- LEP" Supergroup	NA						
"ECD-LEP" Supergroup	NA	NA	NA	NA	NA	NA	Not in "ECD- LEP" Supergroup	NA						

The table includes three "Change in Point-Based Proficiency Rate" columns for both the school target groups and the state comparison groups, for the three most recent two-year time periods. These columns contain the change in pointbased proficiency from one year to the next. Point-based proficiency is calculated using the same method as is used for the Achievement Priority Area.

The "Gap in Rates" column shows the gap in rates between the target group and the comparison group, calculated by subtracting the state comparison group's change from the school target group's change. Positive numbers, meaning that the achievement gap is decreasing, are green, while negative numbers, meaning that the achievement gap is increasing, are red.

Finally, the table includes a "Change Score" column, showing the weighted average gap in rates between the target group and the comparison group across the three most recent two year time periods. A positive number means that the gap over the 4 prior years (representing the 3 prior two year time periods) is decreasing; a negative number means that the gap over the 4 prior years is increasing.

Example (highlighted in yellow): from 2009-10 to 2010-11, students with disabilities increased their pointbased proficiency rate by 4.0%. The next year, the same group increased it by 2.6%. The third year, the same group decreased their point-based proficiency rate by 4.3%. By comparison, students without disabilities
statewide gained 0.6%, lost 0.2%, and gained 0.8% during the same time periods. This means that, from 200910 to 2010-11, the gap in rates was 3.4\%, calculated by subtracting 0.6\% from 4.0\%. Similarly, from 2010-11 to 2011-12 the gap in rates was 2.8%, calculated by subtracting $\mathbf{- 0 . 2 \%}$ from $\mathbf{2 . 6 \%}$. Finally, from 2011-12 to 201213 the gap in rates was -5.1%, calculated by subtracting 0.8% from -4.3%.

The Closing Graduation Gaps table has the same layout, but instead of achievement points it shows the changes in graduation rates and gaps in rates. Additionally, instead of enrollment figures it shows the number of "Students in Cohort", which is the number of students in the 4 -Year Cohort Graduation Rate. The following sample Closing Graduation Gaps table reflects these differences:

Sample High

Closing Graduation Gaps | Score 33.7/50

	School Target Group Rates						State Comparison Group Rates				Gap in Rates			
	Students in Cohort			Change in Graduation Rate				Change in Graduation Rate						
	N	$\begin{aligned} & \stackrel{\sim}{\circ} \\ & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{*}} \\ & \underset{\sim}{\underset{\sim}{2}} \end{aligned}$	$\begin{array}{ll} \text { N } & \tilde{O} \\ O_{0} \\ 0 \\ \dot{0} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$$			$\begin{aligned} & \tilde{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{\rightharpoonup}{\bullet} \end{aligned}$	$\stackrel{\underset{\sim}{\stackrel{N}{*}}}{\stackrel{\rightharpoonup}{\stackrel{ }{\sim}}}$	$\begin{array}{r} 0 \\ \hline \text { O } \\ 0 \\ \dot{0} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{ll} 0 & 0 \\ 0 \\ \vdots \\ \stackrel{\rightharpoonup}{\bullet} & 0 \\ \hline \end{array}$		
American Indian or Alaska Native	NA	NA	NA	NA	NA	NA	White not Hispanic	NA						
Asian or Pacific Islander	NA	NA	NA	NA	NA	NA		NA						
Black not Hispanic	NA	37	37	NA	10.5\%	-5.4\%		NA	4\%	-0.5\%	NA	6.5\%	-4.9\%	-0.004
Hispanic	NA	55	66	NA	9.7\%	9.7\%		NA	3.1\%	7.3\%	NA	6.2\%	12.4\%	0.07
Students with Disabilities	NA	44	52	NA	0.9\%	-2.6\%	Students without Disabilities	NA	2.8\%	1.3\%	NA	-1.9\%	-3.9\%	-. 032
Economically Disadvantaged	NA	144	173	NA	4.6\%	3.6\%	Not Economically Disadvantaged	NA	2.4\%	0.9\%	NA	2.7\%	2.2\%	0.025
Limited English Proficient	NA	NA	NA	NA	NA	NA	English Proficient	NA						
"All 3" Supergroup	NA	NA	NA	NA	NA	NA	Not in "All 3" Supergroup	NA						
"SwD-ECD" Supergroup	NA	NA	NA	NA	NA	NA	Not in "SwD- ECD" Supergroup	NA						
"SwD-LEP" Supergroup	NA	NA	NA	NA	NA	NA	Not in "SwD- LEP" Supergroup	NA						
"ECD-LEP" Supergroup	NA	NA	NA	NA	NA	NA	Not in "ECDLEP" Supergroup	NA						

Closing Gaps Walkthrough

This walkthrough guides the user through determination of a Closing Achievement Gaps score in reading for Sample Elementary. It also includes a shorter description of a Closing Graduation Gaps determination for Sample High, illustrating how graduation differs in this Priority Area. To determine an overall Closing Gaps score, reading, mathematics, and graduation scores are calculated as applicable and added.

Reading Gaps Example

Step 1: Convert Change in Rate from Percent to Decimal

Closing Achievement Gaps calculations are based on achievement points like those of the Student Achievement area. Due to limited space, these points are not shown in the report card for Closing Achievement Gaps. Instead, the Change in Point-Based Proficiency Rate from one year to the next is shown. Please note, prior to calculating the Change in PointBased Proficiency rate, any singular Point-Based Proficiency Rate greater than one is replaced with a " 1 " to limit the maximum size of the change before the Change in Point-Based Proficiency Rate is calculated. (A Point-Based Proficiency Rate may exceed one because 'extra-credit' is given for advanced students). Additionally, to be included in Closing Gaps calculations a subgroup must have at least two "Changes in Point-Based Proficiency Rates" available from two time periods of data, three years of data, including the current year. A school must have at least one subgroup which meets the requirements in order to have a Closing Gaps score.

The first step in determining a Closing Achievement Gaps score is to convert from percents to decimals, which simply involves dividing the percent by 100. For this illustration, only rows with data are shown:

Sample Elementary - Reading Achievement

	School Target Group Rates						State Comparison Group Rates				Gap in Rates			
	Students Tested			Change in Point-Based Proficiency Rate				Change in Point-Based Proficiency Rate						
	$\xrightarrow{\sim}$	$\xrightarrow[\sim]{\sim}$												
Black not Hispanic	120	114	122	4.1\%	2.4\%	4.5\%		0.7\%	-0.1\%	0.9\%	3.4\%	2.5\%	3.6\%	0.032
Hispanic	45	50	43	-1.0\%	-7.3\%	5.4\%		0.7\%	-0.1\%	0.9\%	-1.7\%	-7.2\%	4.5\%	-0.014
Students with Disabilities	29	36	29	4.0\%	2.6\%	-4.3\%	Students without Disabilities	0.6\%	-0.2\%	0.8\%	3.4\%	2.8\%	-5.1\%	0
Economically Disadvantaged	153	144	148	5.3\%	-0.1\%	4.9\%	Not Economically Disadvantaged	1.0\%	0.2\%	0.7\%	4.3\%	-0.7\%	4.2\%	0.026

	School Target Group Rates						State Comparison Group Rates				Gap in Rates			
	Students Tested			Change in Point-Based Proficiency Rate				Change in Point-Based Proficiency Rate						
	$\begin{aligned} & \text { N} \\ & \stackrel{\rightharpoonup}{\Delta} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\xrightarrow[N]{\stackrel{N}{\circ}}$	$\underset{\underset{\sim}{\underset{\omega}{\sim}} \underset{\sim}{\sim}}{\sim}$									$\stackrel{0}{0}$		
Black not Hispanic	120	114	122	. 041	. 024	. 045	White not	. 007	-. 001	. 009	. 034	. 025	. 036	0.032
Hispanic	45	50	43	-. 010	-. 073	. 054	Hispanic	. 007	-. 001	. 009	-. 017	-. 072	. 045	-0.014
Students with Disabilities	29	36	29	. 040	. 026	-. 043	Students without Disabilities	. 006	-. 002	. 008	. 034	. 028	-. 051	0
Economically Disadvantaged	153	144	148	. 053	-. 001	. 049	Not Economically Disadvantaged	. 010	. 002	. 007	. 043	-. 007	. 042	0.026

Step 2: Calculate the Gap in Rates for Each Target Group-Comparison Pair

In this step we subtract the state comparison group Change in Point-Based Proficiency Rate from the school target group Change in Point-Based Proficiency Rate to get the Gap in Rates. This is done for each of the time periods and for each group.

Formula

Gap in Rates $=$ School Target Group Change in Rate - State Comparison Group Change in Rate
Please note, if any Gap in Rates is a positive value because both the school target group and the state comparison group are declining and the state comparison group is declining at a faster rate, we replace the change score with a zero to prevent schools from being rewarded for declining performance.

Step 3: Calculate Students Tested Weights

Next, we calculate a weight for each year based upon the numbers of students tested each year. To do this we calculate an average of students tested over the three years and divide each year's number tested by the average number of students tested.

Formulas

$$
\begin{aligned}
& \text { Students Tested Weight Prior Year Two }=\frac{\text { Prior Year } 2 \text { Number Tested }}{\text { Average Number Tested }} \\
& \text { Students Tested Weight Prior Year }=\frac{\text { Prior Year Number Tested }}{\text { Average Number Tested }} \\
& \text { Students Tested Weight Current Year }
\end{aligned}
$$

Calculation

Students Tested Weight Prior Year Two $=\frac{120}{(120+114+122) / 3}=\mathbf{1 . 0 1 1}$
Students Tested Weight Prior Year $=\frac{114}{(120+114+122) / 3}=.961$
Students Tested Weight Current Year $=\frac{122}{(120+114+122) / 3}=\mathbf{1 . 0 2 8}$

Step 4: Calculate Annual Weights

Next, we calculate a weight for each year's average which reflects the idea that more recent years should count more heavily. To do this, we calculate a weight that is the product of the "Students Tested Weight" (from Step 3) and a "Multiplier" that is higher for more recent years. In this step, we also calculate a Sum of Annual Weights in preparation for the final closing gaps calculation.

The Multipliers that go into each year's weight depend upon how many years of data are available that meet our cell size (minimum number of students with pertinent data) of 20:

- Three years of change data available: "Multipliers" are 1.5 for the current year, 1.25 for the prior year, and 1 for the year before that; Students Tested is averaged across all three years.
- Two years of change data available: "Multipliers" are 1.5 for the current year and 1 for the prior year; Students Tested is averaged across only the current and prior years.

Formulas (Reflect Multipliers for 3 years of relevant data)

Prior Year 2 Weight $=1 \times$ Students Tested Weight Prior Year Two
Prior Year 1 Weight $=1.25 \times$ Students Tested Weight Prior Year
Current Year Weight $=1.5 \times$ Students Tested Weight Current Year

Sum of Annual Weights = Prior Year 2 Weight + Prior Year 1 Weight + Current Year Weight

Calculation

The example below shows the weighting used for Black not Hispanic students:
Prior Year 2 Weight $=1 \times 1.011=\mathbf{1 . 0 1 1}$
Prior Year 1 Weight $=1.25 \times .961=\mathbf{1 . 2 0 1}$
Current Year Weight $=1.5 \times 1.028=\mathbf{1 . 5 4 2}$
Sum of Annual Weights $=1.011+1.201+1.542=3.754$

Step 5: Determine the Weighted Gap Rates and the Change Score

In Step 5 we determine the Weighted Gap Rates by multiplying the Gap in Rates determined in Step 2 by the Annual Weights calculated in Step 4. We also calculate the Sum of Weighted Gap Rates which allows us to determine the final change score which is the Sum of Weighted Gap Rates divided by the Sum of Annual Weights, from Step 4.

Formulas

Weighted Gap Rate Prior Year $2=$ Gap in Rates \times Prior Year 2 Weight
Weighted Gap Rate Prior Year $1=$ Gap in Rates \times Prior Year 1 Weight
Weighted Gap Rate Current Year $=$ Gap in Rates \times Current Year Weight
Sum of Weighted Gap Rates
$=$ Weighted Gap Rate Prior Year $2+$ Weighted Gap Rate Prior Year $1+$ Weighted Gap Rate Current Year
Change Score $=\frac{\text { Sum of Weighted Gap Rates }}{\text { Sum of Annual Weights }}$

Calculation

Weighted Gap Rate Prior Year $2=0.034 \times 1.011=\mathbf{0 . 0 3 4}$
Weighted Gap Rate Prior Year $1=0.025 \times 1.201=\mathbf{0 . 0 3 0}$
Weighted Gap Rate Current Year $=0.036 \times 1.542=\mathbf{0 . 0 5 6}$

Sum of Weighted Gap Rate $=(0.034+0.030+0.056)=.120$

Change Score $=\frac{0.120}{3.754}=\mathbf{0 . 0 3 2}$

If the group's average point-based proficiency rate is greater than or equal to 0.9 , the change score is adjusted to be equal to the highest change score observed for that subgroup at any school in the state. This will be indicated on the report card by the symbol "!". This is to ensure that schools with very high achievement are not penalized with low Closing Gaps scores for small increases in gaps.

Step 6: Determine the Closing Achievement Gaps Score

Once we have a change score for each group-comparison pair in the school, we average those raw scores together and use a formula to determine the Closing Achievement Gaps score. The formula is complex, in order to put Closing Gaps scores on a similar scale to Student Achievement.

Definitions

Average Change Score $=$ Average of all Change Scores calculated for the school
Possible Points $=25$ if the school has Closing Graduation Gaps data, or 50 if it does not

Formula

Closing Achievement Gaps Score $=[($ Average Change Score $\times 3.37)+0.66] \times$ Possible Points
Note: 3.37 and 0.66 are numbers that align Closing Gaps to a scale based on Student Achievement scores.

Calculation

Average Change Score $=\frac{0.032+-0.014+0+0.026}{4}=0.011 ;$ Possible Points $=50$
Closing Achievement Gaps Score $=[(0.011 \times 3.37)+0.66] \times 50=\mathbf{3 4 . 9}$
Sample Elementary has a Closing Achievement Gaps score in reading of 34.9.

Closing Graduation Gaps Example

The process for calculating a Closing Graduation Gaps score is nearly identical to that for achievement gaps, with some differences:

1. "Students in Cohort" takes the place of "Students Tested".
2. "Graduation Rates" take the place of "Point-Based Proficiency Rates".
3. The number of possible points is 50 if the school has Closing Achievement Gaps data described above, or 100 if it does not.
4. The numbers in the score formula that align Closing Gaps to Student Achievement are different:

Closing Graduation Gaps Score $=[($ Average Change Score $\times 1.02)+0.66] \times$ Possible Points
Let's step through the process to illustrate using Sample High School data. Note that for 2012-13 report cards the Change in Graduation Rate is not available for the 2008-09 to 2009-10 period because cohort graduation rates are not available for 2008-09.

Step 1: Convert Change in Rate from Percent to Decimal

Sample High - Graduation Rates

	School Target Group Rates						State Comparison Group Rates				Gap in Rates			
	Students in Cohort			Change in Graduation Rate				Change in Graduation Rate			$\begin{array}{ll} \text { N } & \text { N } \\ \text { O} \\ \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\ 0 \end{array}$			
	N 0 0 号	N			$\begin{array}{ll} \text { N } \\ \text { N } \\ \text { O } \\ \stackrel{O}{0} \\ \stackrel{1}{\bullet} \\ \stackrel{\rightharpoonup}{\bullet} & + \\ \hline \end{array}$				$\begin{array}{ll} & \text { N } \\ \text { O } \\ \text { O } \\ \stackrel{0}{0} \\ \stackrel{\rightharpoonup}{\bullet} \\ \stackrel{\rightharpoonup}{\bullet} \\ \hline \end{array}$					
Black not Hispanic	NA	37	37	NA	10.5\%	-5.4\%		NA	4\%	-0.5\%	NA	6.5\%	-4.9\%	-0.004
Hispanic	NA	55	66	NA	9.7\%	9.7\%		NA	3.1\%	7.3\%	NA	6.2\%	12.4\%	0.07
Students with Disabilities	NA	44	52	NA	0.9\%	-2.6\%	Students without Disabilities	NA	2.8\%	1.3\%	NA	-1.9\%	-3.9\%	-. 032
Economically Disadvantaged	NA	144	173	NA	4.6\%	3.6\%	Not Economically Disadvantaged	NA	2.4\%	0.9\%	NA	2.7\%	2.2\%	0.025

Divided by 100

	School Target Group Rates						State Comparison Group Rates				Gap in Rates			
	Students in Cohort			Change in Graduation Rate				Change in Graduation Rate			$\begin{array}{ll} & \sim \\ & 0 \\ \hline 8 & 0 \\ \hline & 0 \\ 0 & 0 \\ 0 & 0 \\ & 0 \end{array}$	$\begin{array}{ll} \sim \\ \sim \\ \hline \end{array}$		
	N 0 号	N $\stackrel{\ominus}{\circ}$ $\stackrel{\rightharpoonup}{\bullet}$	$\xrightarrow[\sim]{\text { O}} \stackrel{\text { ¢ }}{\stackrel{\rightharpoonup}{\stackrel{1}{\sim}}}$	$\begin{array}{ll} \text { N } \\ \text { O } \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$		$\begin{array}{ll} & \text { N } \\ \text { O } \\ \stackrel{\circ}{\circ} \\ \stackrel{1}{\oplus} \\ \stackrel{\rightharpoonup}{\oplus} \\ \stackrel{\circ}{\circ} \end{array}$		$\begin{array}{ll} & N \\ \sim & 0 \\ \hline ᄋ & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ & 0 \end{array}$						
Black not Hispanic	NA	37	37	NA	0.105	-0.054		NA	0.04	-0.005	NA	0.065	-0.049	-0.004
Hispanic	NA	55	66	NA	0.097	0.097		NA	0.031	0.073	NA	0.062	0.124	0.07
Students with Disabilities	NA	44	52	NA	0.009	-0.026	Students without Disabilities	NA	0.028	0.013	NA	-0.019	-0.039	-. 032
Economically Disadvantaged	NA	144	173	NA	0.046	0.036	Not Economically Disadvantaged	NA	0.024	0.009	NA	0.027	0.022	0.025

Step 2: Calculate Gap in Rates for Each Group-Comparison Pair

In this step we subtract State Comparison Group Change in Graduation Rate from the school target group Change in Graduation Rate to get the Gap in Rates. This is done for each of the time periods and for each group.

Formula

Gap in Rates $=$ School Target Group Change in Rate - State Comparison Group Change in Rate

If any Gap in Rates is a positive value because both the school target group and the state comparison group are declining and the state comparison group is declining at a faster rate, replace the change score with a zero to prevent schools from being rewarded for declining graduation rates.

Step 3: Calculate Students in Cohort Weights

Next, we calculate a 'Students in Cohort Weight' for each year based upon the number of students expected to graduate for each year. To do this we calculate the average Students in Cohort over the three years and divide each year Students in Cohort by the average Students in Cohort.

Formulas

Students in Cohort Weight Prior Year Two $=\frac{\text { Prior Year } 2 \text { Students in Cohort }}{\text { Average Students in Cohort }}$
Students in Cohort Weight Prior Year $=\frac{\text { Prior Year Students in Cohort }}{\text { Average Students in Cohort }}$
Students in Cohort Weight Current Year $=\frac{\text { Current Year Students in Cohort }}{\text { Average Students in Cohort }}$

Calculation

The below example shows the weighting used for Black not Hispanic students.

$$
\begin{aligned}
& \text { Students in Cohort Weight Prior Year }=\frac{37}{(37+37) / 2}=\mathbf{1} \\
& \text { Students in Cohort Weight Current Year }=\frac{37}{(37+37) / 2}=\mathbf{1}
\end{aligned}
$$

Step 4: Calculate Annual Weights

Next, we calculate a weight for each year's average which reflects the idea that more recent years should count more heavily. To do this, we calculate a weight that is the product of the "Students in Cohort Weight" (from Step 3) and a "Multiplier" that is higher for more recent years. In this step, we also calculate a Sum of Annual Weights in preparation for the final closing gaps calculation.

The Multipliers that go into each year's weight depend upon how many years of data are available that meet our cell size (minimum number of students with pertinent data) of 20 :

- Three years of change data available: "Multipliers" are 1.5 for the current year, 1.25 for the prior year, and 1 for the year before that; Students in Cohort is averaged across all three years.
- Two years of change data available: "Multipliers" are 1.5 for the current year and 1 for the prior year; Students in Cohort is averaged across only the current and prior years.

Formulas (Reflect Multipliers for 2 years of relevant data)

Prior Year 1 Weight $=1 \times$ Students in Cohort Weight Prior Year

Current Year Weight $=1.5 \times$ Students in Cohort Weight Current YearSum of Annual Weights
 $=$ Prior Year 2 Weight + Prior Year 1 Weight + Current Year Weight

Calculation

The below example shows the weighting used for Black not Hispanic students.

Prior Year 1 Weight $=1 \times 1=\mathbf{1}$
Current Year Weight $=1.5 \times 1=\mathbf{1 . 5}$

Sum of Annual Weights $=1+1.5=2.5$

Step 5: Determine the Weighted Gap Rates and the Change Score

In Step 5, we determine the weighted gap rates by multiplying the Gap in Rates determined in Step 2 by the Annual Weights calculated in Step 4. We also calculate the Sum of Weighted Gap Rates which allows us to determine the final Change Score which is the Sum of Weighted Gap Rates divided by the Sum of Annual Weights.

Formulas

Weighted Gap Rate Prior Year $1=$ Gap in Rates \times Prior Year 1 Weight
Weighted Gap Rate Current Year $=$ Gap in Rates \times Current Year Weight
Sum of Weighted Gap Rates
$=$ Weighted Gap Rate Prior Year $2+$ Weighted Gap Rate Prior Year $1+$ Weighted Gap Rate Current Year

Change Score $=\frac{\text { Sum of Weighted Gap Rates }}{\text { Sum of Annual Weights }}$

Calculation

Weighted Gap Rate Prior Year $1=0.065 \times 1=0.065$
Weighted Gap Rate Current Year $=-0.049 \times 1.5=\mathbf{- 0 . 0 7 4}$

Sum of Weighted Gap Rate $=(0.065+-0.074)=-0.009$

Change Score $=\frac{-0.009}{2.5}=-\mathbf{0 . 0 0 4}$

If the group's average four-year graduation rate is greater than or equal to 0.9 , the change score is adjusted to be equal to the highest change score observed for that subgroup at any school in the state. This will be indicated on the report card by the symbol "!". This is to ensure that schools with very high graduation rates are not penalized with low Closing Gaps scores for small increases in gaps.

Step 6: Determine the Closing Graduation Gaps Score

Once we have a change score for each group-comparison pair in the school, we average those raw scores together and use a formula to determine the Closing Graduation Gaps score. The formula is complex, in order to put Closing Gaps scores on a similar scale to Student Achievement.

Definitions

Average Change Score $=$ Average of all change scores calculated for the school
Possible Points $=50$ if the school has Achievement Gaps data, or 100 if it does not

Formula

Closing Graduation Gaps Score $=[($ Average Change Score $\times 1.02)+0.66] \times$ Possible Points
Note: 1.02 and 0.66 are numbers that align Closing Gaps to a scale based on Graduation Rates.

Calculation

Average Change Score $=\frac{-0.004+0.070+-0.032+0.025}{4}=0.015 ;$ Possible Points $=50$
Closing Graduation Gaps Score $=[(0.015 \times 1.02)+0.66] \times 50=\mathbf{3 3 . 8}$

Sample High has a Closing Graduation Gaps score of 33.8.

Closing Gaps Priority Area Worksheet

This worksheet has three parts: Closing Reading Achievement Gaps, Closing Mathematics Achievement Gaps, and Closing Graduation Gaps. Each part requires you to pull data from the Closing Gaps detail in the School Report Card Detail. Note that the score calculated here may not exactly match the report card due to rounding differences.

The report card for a particular school will include some or all Closing Gaps data:

- Closing Graduation Gaps only
- Closing Reading Achievement Gaps and Closing Mathematics Achievement Gaps
- All three Closing Gaps components

A school will not have Closing Achievement Gaps data and scores reported unless they are available for both reading and mathematics. The combination of Closing Gaps components calculated and reported for a school determines the number of possible points for each component:

	Scenario 1 Achievement Only		Scenario 2 Graduation Only		Scenario 3 Achievement and Graduation	
Component	Present?	Possible points	Present?	Possible points	Present?	Possible points
Closing Reading Achievement Gaps	Yes	50	No	-	Yes	25
Closing Mathematics Achievement Gaps	Yes	50	No	-	Yes	25
Closing Graduation Gaps	No	-	Yes	100	Yes	50

Instructions

Complete the worksheets that include components calculated for the school, entering data from the School Report Card Detail where appropriate. When all applicable worksheets are complete, add the component scores to determine the school's total Closing Gaps score:

Closing Reading Achievement Gaps Worksheet

Step 1: Convert Change in Point-Based Proficiency Rates to Decimal and Calculate the Gap in Rates

Enter data from the "Change in Point-Based Proficiency Rate" columns under the "School Target Group Rates" and "State Comparison Group Rates" headings in the report card detail table. If "NA" is given for a particular pair of target and comparison groups, leave the boxes blank for that pair. Then, divide the "Change in Point-Based Proficiency Rate" by 100

School Target Group
(1a) American Indian or Alaska Native
(1c) Asian or Pacific Islander
(1e) Black not Hispanic
(1g) Hispanic
(1i) Students with Disabilities
(1k) Economically Disadvantaged
(1m) Limited English Proficient
(10) "All 3" Supergroup
(1q) "SwD-ECD" Supergroup
(1s) "SwD-LEP" Supergroup
(1u) "ECD-LEP" Supergroup
State Comparison Group
(1b) White not Hispanic
(1d) White not Hispanic
(1f) White not Hispanic
(1h) White not Hispanic
(1j) Students without Disabilities
(1) Not Economically Disadvantaged
(1n) English Proficient
(1p) Not in "All 3" Supergroup
(1r) Not in "SwD-ECD" Supergroup
(1t) Not in "SwD-LEP" Supergroup
(1v) Not in "ECD-LEP" Supergroup

Change in Point-Based
Proficiency Rate
(in \%)

$\div 100=$	1 a .3	1 a .2	1a. 1
$\div 100=$	1c. 3	1c. 2	1c. 1
$\div 100=$	1e. 3	1 e .2	1e. 1
$\div 100=$	1g. 3	1g. 2	1g. 1
$\div 100=$	1 i .3	1 i .2	1i. 1
$\div 100=$	1k. 3	1k. 2	1k. 1
$\div 100=$	1m. 3	1 m .2	1 m .1
$\div 100=$	10.3	10.2	10.1
$\div 100=$	1q. 3	1 q .2	1q. 1
$\div 100=$	1s. 3	1s. 2	1s. 1
$\div 100=$	1u. 3	1 u .2	1 u .1

Change in Point-Based
Proficiency Rate (in Decimal)

Step 2: Calculate the Gap in Rates

Subtract the State Comparison from the School Target Group Change in Point-Based Proficiency Rate in Decimal to Determine the Gap in Rates. If the Gap in Rates is a positive due to the state comparison group declining at a faster rate than the school target group, replace the Gap in Rates with a zero.

School Target Group
American Indian or Alaska Native
Asian or Pacific Islander
Black not Hispanic
Hispanic
Students with Disabilities
Economically Disadvantaged
Limited English Proficient
"All 3" Supergroup
"SwD-ECD" Supergroup
"SwD-LEP" Supergroup
"ECD-LEP" Supergroup

State Comparison Group
White not Hispanic
White not Hispanic
White not Hispanic
White not Hispanic
Students without Disabilities
Not Economically Disadvantaged English Proficient
Not in "All 3" Supergroup
Not in "SwD-ECD" Supergroup
Not in "SwD-LEP" Supergroup
Not in "ECD-LEP" Supergroup

Gap in Rates (Target - Comparison Group Change)

Step 4: Calculate Annual Weights
Copy "How many years with students tested $>=20$ " from Step 3 . Follow instructions to calculate multipliers ($\mathrm{M} 2, \mathrm{M} 1, \mathrm{M}$) for each row based on the number of years with students tested greater than $20(\mathrm{Y})$. Calculate Annual Weights by multiplying the multiplier by the students tested weight, calculated in Step 3, for each row (Target Group).

Step 5: Determine the Weighted Gap Rates and the Change Score

Multiply the gap in rates (in Step 2) by the Annual weights (in Step 4) to determine the Weighted Gap Rates. If a group's average point-based proficiency is greater than or equal to .9 , adjust the change score to be whatever the highest Change Score in the Reading Achievement calculation was that was achieved by any school.

Change Score

Target Group

American Indian or Alaska Native

Asian or Pacific Islander
Black
Hispanic
Students with Disabilities

Economically Disadvantaged

Limited English Proficient
"All 3" Supergroup
"SwD-ECD" Supergroup
"SwD-LEP" Supergroup
"ECD-LEP" Supergroup

$$
\text { (Gap in Rates } \frac{\text { Weighted Gap Rates }}{(\text { Step 2) x Annual Weights (Step 4)) }}
$$

Sum of Weighted Gap Rates/Sum of Annual

Weights (Step 4)
Sum of Weighted Gap Rates

Closing Mathematics Achievement Gaps Worksheet

Step 1: Convert Change in Point-Based Proficiency Rates to Decimal and Calculate the Gap in Rates

Enter data from the "Change in Point-Based Proficiency Rate" columns under the "School Target Group Rates" and "State Comparison Group Rates" headings in the report card detail table. If "NA" is given for a particular pair of target and comparison groups, leave the boxes blank for that pair. Then, divide the "Change in Point-Based Proficiency Rate" by 100

School Target Group
(1a) American Indian or Alaska Native
(1c) Asian or Pacific Islander
(1e) Black not Hispanic
(1g) Hispanic
(1i) Students with Disabilities
(1k) Economically Disadvantaged
(1m) Limited English Proficient
(10) "All 3" Supergroup
(1q) "SwD-ECD" Supergroup
(1s) "SwD-LEP" Supergroup
(1u) "ECD-LEP" Supergroup
State Comparison Group
(1b) White not Hispanic
(1d) White not Hispanic
(1f) White not Hispanic
(1h) White not Hispanic
(1j) Students without Disabilities
(1) Not Economically Disadvantaged
(1n) English Proficient
(1p) Not in "All 3" Supergroup
(1r) Not in "SwD-ECD" Supergroup
(1t) Not in "SwD-LEP" Supergroup
(1v) Not in "ECD-LEP" Supergroup

Change in Point-Based
Proficiency Rate
(in \%)

$\div 100=$	1a. 3	1 a .2	1a. 1
$\div 100=$	1c. 3	1c. 2	1c. 1
$\div 100=$	1e. 3	1 e .2	1e. 1
$\div 100=$	1 g .3	1g. 2	1g. 1
$\div 100=$	1 i .3	1 i .2	1 i .1
$\div 100=$	1k. 3	1k. 2	1k. 1
$\div 100=$	1m. 3	1 m .2	1m. 1
$\div 100=$	10.3	10.2	10.1
$\div 100=$	1q. 3	1q. 2	1q. 1
$\div 100=$	1s. 3	1s. 2	1s. 1
$\div 100=$	1u. 3	1 u .2	1 u .1

Change in Point-Based
Proficiency Rate (in Decimal)

Step 2: Calculate the Gap in Rates

Subtract the State Comparison from the School Target Group Change in Point-Based Proficiency Rate in Decimal to Determine the Gap in Rates. If the Gap in Rates is a positive due to the state comparison group declining at a faster rate than the school target group, replace the Gap in Rates with a zero.

School Target Group
American Indian or Alaska Native
Asian or Pacific Islander
Black not Hispanic
Hispanic
Students with Disabilities
Economically Disadvantaged
Limited English Proficient
"All 3" Supergroup
"SwD-ECD" Supergroup
"SwD-LEP" Supergroup
"ECD-LEP" Supergroup

State Comparison Group
White not Hispanic
White not Hispanic
White not Hispanic
White not Hispanic
Students without Disabilities
Not Economically Disadvantaged English Proficient
Not in "All 3" Supergroup
Not in "SwD-ECD" Supergroup
Not in "SwD-LEP" Supergroup
Not in "ECD-LEP" Supergroup

Gap in Rates (Target - Comparison Group Change)

Enter data from the "Students Tested" columns under "School Target Group Rates" heading in the report card detail table. Then calculate average number tested and students tested weights following the formulas below.

Step 4: Calculate Annual Weights
Copy "How many years with students tested $>=20$ " from Step 3. Follow instructions to calculate multipliers ($\mathrm{M} 2, \mathrm{M} 1, \mathrm{M}$) for each row based on the number of years with students tested greater than $20(\mathrm{Y})$. Calculate Annual Weights by multiplying the multiplier by the students tested weight, calculated in Step 3, for each row (Target Group).

Step 5: Determine the Weighted Gap Rates and the Change Score

Multiply the gap in rates (in Step 2) by the Annual weights (in Step 4) to determine the Weighted Gap Rates. If a group's average point-based proficiency is greater than or equal to .9, adjust the change score to be whatever the highest Change Score in the Mathematics Achievement calculation was that was achieved by that subgroup by any school.

Closing Graduation Gaps Worksheet

Step 1: Convert Graduation Rates to Decimal and Calculate the Gap in Rates

Enter data from the "Change in Graduation Rate" columns under the "School Target Group Rates" and "State Comparison Group Rates" headings in the report card detail table. If "NA" is given for a particular pair of target and comparison groups, leave the boxes blank for that pair. Then, divide the "Change in Graduation Rate" by 100.

	Change in Graduation Rate				Change in Graduation Rate		
School Target Group		$\begin{array}{ll} \stackrel{N}{\circ} & \stackrel{N}{\circ} \\ \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{N}} \\ \stackrel{\rightharpoonup}{\sim} \\ \stackrel{\rightharpoonup}{\bullet} \end{array}$					
(1a) American Indian or Alaska Native				$\div 100=$	1a. 3	1 a .2	1a. 1
(1c) Asian or Pacific Islander				$\div 100=$	1c. 3	1c. 2	1c. 1
(1e) Black not Hispanic				$\div 100=$	1e. 3	1e. 2	1e. 1
(1g) Hispanic				$\div 100=$	1g. 3	1g. 2	1g. 1
(1i) Students with Disabilities				$\div 100=$	1 i .3	1 i .2	1i. 1
(1k) Economically Disadvantaged				$\div 100=$	1k. 3	1k. 2	1k. 1
(1m) Limited English Proficient				$\div 100=$	1m. 3	1 m .2	1 m .1
(10) "All 3" Supergroup				$\div 100=$	10.3	10.2	10.1
(1q) "SwD-ECD" Supergroup				$\div 100=$	1q. 3	1q. 2	1q. 1
(1s) "SwD-LEP" Supergroup				$\div 100=$	1s. 3	1s. 2	1s. 1
(1u) "ECD-LEP" Supergroup				$\div 100=$	1u. 3	1 u .2	1u. 1
State Comparison Group							
(1b) White not Hispanic				$\div 100=$	1b. 3	1b. 2	1b. 1
(1d) White not Hispanic				$\div 100=$	1d. 3	1d. 2	1d. 1
(1f) White not Hispanic				$\div 100=$	1f. 3	1f. 2	1f. 1
(1h) White not Hispanic				$\div 100=$	1h. 3	1h. 2	1h. 1
(1j) Students without Disabilities				$\div 100=$	lj. 3	lj. 2	1j. 1
(11) Not Economically Disadvantaged				$\div 100=$	11.3	11.2	11.1
(1n) English Proficient				$\div 100=$	1n. 3	1n. 2	1n. 1
(1p) Not in "All 3" Supergroup				$\div 100=$	1p. 3	1p. 2	1p. 1
(1r) Not in "SwD-ECD" Supergroup				$\div 100=$	1r. 3	1 r .2	1r. 1
(1t) Not in "SwD-LEP" Supergroup				$\div 100=$	1t. 3	1t. 2	1t. 1
(1v) Not in "ECD-LEP" Supergroup				$\div 100=$	1v. 3	1v. 2	1v. 1

Step 2: Calculate the Gap in Rates

Subtract the State Comparison from the School Target Group Change in Graduation Rate in Decimal to Determine the Gap in Rates.
If the Gap in Rates is a positive due to the state comparison group declining at a faster rate than the school target group, replace the Gap in Rates with a zero.

School Target Group
American Indian or Alaska Native
Asian or Pacific Islander
Black not Hispanic
Hispanic
Students with Disabilities
Economically Disadvantaged
Limited English Proficient
"All 3" Supergroup
"SwD-ECD" Supergroup
"SwD-LEP" Supergroup
"ECD-LEP" Supergroup

State Comparison Group
White not Hispanic
White not Hispanic
White not Hispanic
White not Hispanic
Students without Disabilities
Not Economically Disadvantaged
English Proficient
Not in "All 3" Supergroup
Not in "SwD-ECD" Supergroup
Not in "SwD-LEP" Supergroup
Not in "ECD-LEP" Supergroup

Gap in Rates (Target - Comparison Group Change)

1a.3-1b.3:
1c.3-1d.3:
1e.3-1f.3:
1g.3-1h.3:
1i.3-1j.3:
1k.3-1.3:
1m.3-1n.3:
10.3-1p.3:

1q.3-1r.3:
1s.3-1t.3:
1u.3-1v.3:
 とL-ZIOZ
of
Zโ-亡LOZ

2 a .3	2 a .2	2 a .1
2 b .3	2 b .2	2 b .1
2 c .3	2 c .2	2 c .1
2 d .3	2 d .2	2 d .1
2 e .3	2 e .2	2 e .1
2 f .3	2 f .2	2 f .1
2 g .3	2 g .2	2 g .1
2 h .3	2 h .2	2 h .1
2 i .3	2 i .2	2 i .1
2 j .3	2 j .2	2 j .1
2 k .3	2 k .2	2 k .1

Enter data from the "Students in Cohort" columns under "School Target Group Rates" heading in the report card detail table. Then calculate average number of Students in Cohort and Student in Cohort weights following the formulas below.

Step 4: Calculate Annual Weights

Copy "How many years with Students in Cohort $>=20$ " from Step 3. Follow instructions to calculate multipliers (M2, M1, M) for each row based on the number of years with the number of Students in Cohort greater than $20(\mathrm{Y})$. Calculate Annual Weights by multiplying the multiplier by the Students in Cohort weight, calculated in Step 3, for each row (Target Group).

Step 5: Determine the Weighted Gap Rates and the Change Score

Multiply the gap in rates (in Step 2) by the Annual weights (in Step 4) to determine the Weighted Gap Rates. If a group's average four-year graduation is greater than or equal to .9, adjust the change score to be whatever the highest Change Score in the Graduation calculation was that was achieved by that subgroup by any school.

Change Score

Calculating a Score for the On-Track and Postsecondary Readiness Priority Area

The On-Track and Postsecondary Readiness Priority Area is designed to evaluate schools on high-impact indicators that predict student success. It includes attendance and graduation, ACT participation and performance, and student achievement among $3^{\text {rd }}$ graders in reading and $8^{\text {th }}$ graders in mathematics.

Background

The mission of Wisconsin public schools is to ensure that every student becomes a high school graduate ready for college and career. The process of getting a student to graduation begins well before $12^{\text {th }}$ grade, and there are key indicators throughout elementary, middle, and high school that have a direct impact on a student's future likelihood of success. This Priority Area is designed to hold schools accountable on a number of these key indicators.

A graduation/attendance component makes up the bulk of this Priority Area's score. Schools that graduate students are held accountable for graduation rates, and other schools are held accountable for attendance rates. (Among Wisconsin high schools, attendance and graduation track each other fairly closely and have similar, narrow distributions of high rates.)

- Attendance drives all aspects of student success throughout their school career.
- Graduation rate, which we measure as a cohort rate-the percentage of students starting high school together who graduate within a certain time-measures the outcome of our schools' overarching mission.

Several other On-Track measures may also contribute to a school's Priority Area score.

- Reading achievement in $3^{\text {rd }}$ grade and mathematics achievement in $8^{\text {th }}$ grade are measures that strongly predict future success in school transitions and graduation.
- Participation and performance on the ACT-the most widely-taken college placement examination in Wisconsin-is the best measure of college readiness we currently have.

Due to the diversity of school types in Wisconsin, not all of these other On-Track measures apply to every school. As a result, combining the measures into a Priority Area score in a way that treats all schools fairly was necessarily a complex process. As other indicators become available, we will evaluate them for inclusion in this Priority Area.

Reading the Report Card Detail

Attendance

The first table shown in the On-Track and Postsecondary Readiness detail is the attendance rate, the number of days that students actually attended divided by the number of days they could possibly have attended. Data are presented for all students and the lowest-attending student group, which are averaged to determine the attendance score:

Group	Enrollment	Attended Days	Possible Days	Rate
All Students	248	$42,199.0$	$43,830.0$	96.3%
Lowest Group: Students with Disabilities	32	$5,195.5$	$5,604.5$	92.7%

Graduation

The next table shows graduation rate information:

Group	Four-Year Cohort Graduation Rate		Six-Year Cohort Graduation Rate			
	Students in Cohort	Graduates	Rate	Students in Cohort	Graduates	Rate
All Students	311	255	82.0%	328	299	91.2%

Graduation rates are given for a cohort of students comprising the high school students who make up a particular four-year graduating class and do not transfer to a private school, move to another state or country, or are deceased. We report two graduation rates:

- The four-year cohort graduation rate is the percentage of students in the cohort at the end of the fourth year who have graduated from high school.
- The six-year cohort graduation rate is the percentage of students in the cohort at the end of the sixth year (e.g. at the end of 2013-14 for the 2011-12 cohort) who have graduated from high school. This "extended" rate is used to include students who require more than four years to finish high school.

ACT Participation and Performance

The third table provides information on how many $12^{\text {th }}$ grade students took the ACT and how they did:

Group	Enrolled	Tested		Reading		English		Mathematics		Science	
	Students	Students	Percent								
$12^{\text {th }}$ Graders	313	170	54.3\%	125	73.5\%	142	83.5\%	120	70.6\%	160	94.1\%

The percentage of $12^{\text {th }}$ graders tested divided by the number enrolled gives the school's ACT participation rate. The content area breakdowns show how many of the ACT-tested students reached college readiness benchmarks on those portions of the ACT (we use students' best exams for this measure):

Wisconsin Department of Public Instruction
Office of Educational Accountability

- Reading: 21 or higher
- English: 18 or higher
- Mathematics: 22 or higher
- Science: 24 or higher
(More information on ACT's college readiness benchmarks is available at http://www.act.org/education/ benchmarks.html)

Example: At the school shown, 170 of 313 (54.3\%) of $12^{\text {th }}$ graders took the ACT. Of those 170 tested students, 125 (73.5\%) scored 21 or higher in reading, 142 (83.5%) scored 18 or higher in English, 120 (70.6\%) scored 22 or higher in mathematics, and 160 (94.1%) scored 24 or higher in science.

$3^{\text {rd }}$ Grade Reading/8 ${ }^{\text {th }}$ Grade Mathematics Achievement

The final two tables in the On-Track and Postsecondary Readiness detail give information on reading achievement for $3^{\text {rd }}$ grade students and mathematics achievement for $8^{\text {th }}$ grade students. These tables are presented in the same format as Student Achievement, described on page 10.

The difference between this specific measure and other parts of the report card is in how "cell size"the minimum number of students with data necessary to calculate a score-is used. In most places we use a cell size of 20 in the most recent year, but applying this to a single grade would omit a large number of small elementary schools. Instead, for this measure only, we use a cell size of 20 over the two most recent years. This change affects only whether data is presented on the report card and used to determine a score, not the process by which the score is calculated.

Combining Individual Components into a Priority Area Score

The graduation/attendance component of On-Track, which applies to every school, has a maximum score of 80 points. The other On-Track components add up to a possible maximum of 20 points. Because different components out of the three 'Other' On-Track components apply to different types of schools, the number of points possible for each one depends on what mix of them apply to a given school, as specified by the following table.

	$3{ }^{\text {rd }}$ Grade Reading	Alone	20 points
		With $8^{\text {th }}$ grade mathematics	10 points
		With both $8^{\text {th }}$ grade mathematics and ACT participation \& performance	5 points
		Alone	20 points
		With $3^{\text {rd }}$ grade reading	10 points
	$8^{\text {th }}$ Grade Mathematics	With ACT participation \& performance	10 points
		With both $3^{\text {rd }}$ grade reading and ACT participation \& performance	5 points
		Alone	20 points
	and Performance	With $3^{\text {rd }}$ grade reading and/or $8^{\text {th }}$ grade mathematics	10 points

On-Track Walkthrough \#1

This walkthrough will use data on attendance and $3^{\text {rd }}$ grade reading achievement to determine a score for Sample Elementary School.

Step 1: Calculate the Graduation/Attendance Score

Group	Enrollment	Attended Days	Possible Days	Rate
All Students	248	$42,997.5$	$43,830.0$	98.1%
Lowest Group: Hispanic Students	31	$5,346.0$	$5,656.5$	94.5%

This is an elementary school; it does not graduate students, so its attendance rate is used to determine the score. The graduation/attendance score is simply the average of the all students and lowest group rates (expressed as a decimal, not a percentage) multiplied by 80 :

$$
\begin{aligned}
& \text { Graduation/Attendance Score }=\frac{\text { All Student Rate }+ \text { Lowest Group Rate }}{2} \times 80 \\
& \text { Graduation/Attendance Score }=\frac{0.981+0.945}{2} \times 80=77.0
\end{aligned}
$$

Step 2: Calculate the $3^{\text {rd }}$ Grade Reading Achievement Score

Performance Level	Points Multiplier	2010-11			2011-12			2012-13		
		Students		Points	Students		Points	Students		Points
		Count	Percent		Count	Percent		Count	Percent	
Advanced	1.5	9	20.9\%	13.5	10	22.7\%	15	8	19.0\%	12
Proficient	1	11	25.6\%	11	14	31.8\%	14	14	33.3\%	14
Basic	0.5	10	23.3\%	5	9	20.5\%	4.5	11	26.2\%	5.5
Minimal Performance	0	13	30.2\%	0	11	25.0\%	0	9	21.4\%	0
Total Tested	-	43	100.0\%	29.5	44	100.0\%	33.5	42	100.0\%	31.5

The method for calculating the $3^{\text {rd }}$ grade reading and $8^{\text {th }}$ grade mathematics achievement scores is the same as described in the Student Achievement walkthrough on pages 11-14, with the difference that the multiplier used in the final step varies depending on the number of possible points for this component. A simplified version of that walkthrough is presented here; for a detailed description, please see pages 11-14.

Step 2A: Assign and Average Points
Prior Year 2 Average $=29.5 / 43=\mathbf{0 . 6 8 6}$
Prior Year 1 Average $=33.5 / 44=\mathbf{0 . 7 6 1}$
Current Year Average $=31.5 / 42=\mathbf{0 . 7 5 0}$

Step 2B: Calculate Annual Weights

> Prior Year 2 Weight $=1 \times \frac{\text { Prior Year 2 Students Tested }}{\text { Average Students Tested }}=1 \times \frac{43}{(43+44+42) / 3}=\mathbf{1 . 0 0 0}$
> Prior Year 1 Weight $=1.25 \times \frac{\text { Prior Year 1 Students Tested }}{\text { Average Students Tested }}=1.25 \times \frac{44}{(43+44+42) / 3}$ $=1.279$

Current Year Weight $=1.5 \times \frac{\text { Current Year Students Tested }}{\text { Average Students Tested }}=1.5 \times \frac{42}{(43+44+42) / 3}$ $=1.465$

Step 2C: Combine Points and Weights

Prior Year 2 Score $=$ Prior Year 2 Avg. \times Prior Year 2 Weight $=0.686 \times 1.000=\mathbf{0 . 6 8 6}$
Prior Year 1 Score $=$ Prior Year 1 Avg. \times Prior Year 1 Weight $=0.761 \times 1.279=\mathbf{0 . 9 7 3}$
Current Year Score $=$ Current Year Avg. \times Current Year Weight $=0.750 \times 1.465=\mathbf{1 . 0 9 9}$
Step 2D: Calculate Component Score

$$
\text { Comp. Score }=\frac{\text { Prior Year } 2 \text { Score }+ \text { Prior Year } 1 \text { Score }+ \text { Current Year Score }}{\text { Prior Year } 2 \text { Weight }+ \text { Prior Year } 1 \text { Weight }+ \text { Current Year Weight }} \times \text { Poss. Pts. }
$$

Sample Elementary School only has a $3^{\text {rd }}$ grade reading achievement component, so the number of possible points is 20 :

$$
\text { 3rd Grade Reading Achievement Score }=\frac{0.686+0.973+1.099}{1.000+1.279+1.465} \times 20=\mathbf{1 4 . 7}
$$

Step 3: Determine the Total On-Track and Postsecondary Readiness Score

The total score for this Priority Area is the sum of all its components' scores:
Graduation/Attendance Score 77.0
3rd Grade Reading Achievement Score $\quad+14.7$
Total On-Track and Postsecondary Readiness
Score
91.7

Sample Elementary School has an On-Track and Postsecondary Readiness score of 91.7.

On-Track Walkthrough \#2

This walkthrough will use data on graduation and ACT participation and performance to determine a score for Sample High School.

Step 1: Calculate the Graduation/Attendance Score

Group	Four-Year Cohort Graduation Rate		Six-Year Cohort Graduation Rate			
	Students in Cohort	Graduates	Rate	Students in Cohort	Graduates	Rate
All Students	311	255	82.0%	328	299	91.2%

This is a high school; it graduates students, so its graduation rates are used to determine the score. The graduation/attendance score here is the average of the four-year and six-year cohort graduation rates (expressed as a decimal, not a percentage) multiplied by 80 :

$$
\begin{aligned}
& \text { Graduation/Attendance Score }=\frac{4 \text {-Year Cohort Rate }+6 \text {-Year Cohort Rate }}{2} \times 80 \\
& \text { Graduation/Attendance Score }=\frac{0.820+0.912}{2} \times 80=69.3
\end{aligned}
$$

Step 2: Calculate the ACT Participation and Performance Score

Group	Enrolled	Tested		Reading		English		Mathematics		Science	
	Students	Students	Percent								
12^{th} Graders	313	170	54.3\%	125	73.5\%	142	83.5\%	120	70.6\%	160	94.1\%

The ACT participation and performance score is the average of the five rates in the table-participation (tested) rate and the four college-ready benchmark rates in reading, English, mathematics, and science-multiplied by the possible score. (Exception: DPI uses a cell size of 20 throughout the Wisconsin school accountability system as the minimum number of students required for calculations, therefore if there are fewer than 20 ACT participants, the percent that passed benchmark scores in each content area is not reliable enough to be used for this indicator. In this case, the ACT participation rate alone is used and is multiplied by the possible score to arrive at the score for ACT Participation and Performance. See Walkthrough \#3.)

In this example, with no other components present for the school, the possible score is 20 points:

$$
\begin{aligned}
& \text { ACT Score }=\frac{\text { Participation }+ \text { Reading }+ \text { English }+ \text { Mathematics }+ \text { Science }}{5} \times \text { Possible Score } \\
& \text { ACT Score }=\frac{0.543+0.735+0.835+0.706+0.941}{5} \times 20=\mathbf{1 5 . 0}
\end{aligned}
$$

Wisconsin Department of Public Instruction
Office of Educational Accountability
Step 3: Determine the Total On-Track and Postsecondary Readiness Score

> | Graduation/Attendance Score | 69.3 |
| :--- | ---: |
| ACT Participation and Performance Score + | 15.0 |
| Total On-Track and Postsecondary Readiness | |
| Score | |

Sample High School has an On-Track and Postsecondary Readiness score of 84.3.

On-Track Walkthrough \#3

This walkthrough will use data on graduation, ACT participation, $8^{\text {th }}$ grade mathematics achievement, and $3^{\text {rd }}$ grade reading to determine a score for Sample K-12 School.

Step 1: Calculate the Graduation/Attendance Score

Attendance

Group	Enrollment	Attended Days	Possible Days	Rate
All Students	252	$39,288.0$	$42,173.0$	93.2%

Graduation

Group	Four-Year Cohort Graduation Rate			Six-Year Cohort Graduation Rate		
	Students in Cohort	Graduates	Rate	Students in Cohort	Graduates	Rate
All Students	21	19	90.5%	$*$	$*$	$*$

Sample K-12 School graduates students, so we use graduation rates to determine this score. Data for the six-year cohort rate are redacted—presumably, the six-year cohort must not meet the cell size of 20. Therefore, the graduation/attendance score is based only on the four-year cohort rate:

$$
\text { Graduation/Attendance Score }=4 \text {-Year Cohort Rate } \times 80
$$

Graduation/Attendance Score $=0.905 \times 80=\mathbf{7 2 . 4}$
Step 2: Calculate the ACT Participation and Performance Score

	Enrolled	Tested		Reading		English		Mathematics		Science	
	Students	Students	Percent								
$12^{\text {th }}$ Graders	21	14	66.7\%	10	47.6\%	11	52.4\%	8	38.1\%	5	23.8\%

With $8^{\text {th }}$ grade mathematics and $3^{\text {rd }}$ grade reading achievement present for the school, the possible score for this component is 10 points. However, in this example, fewer than 20 students participated in the ACT, which triggers an exception to the rule for calculating the ACT Participation and Performance score. When fewer than 20 students participate, only the participation rate is used in the calculation, because the percent that achieved benchmark score for each of the four content areas is too unreliable. The modified formula that applies to this example is:

$$
\begin{aligned}
& \text { ACT Score }=\frac{\text { Participation }+ \text { Reading }+ \text { English }+ \text { Mathematics }+ \text { Science }}{15} \times \text { Possible Score } \\
& \text { ACT Score }=\frac{0.667}{1} \times 10=6.7
\end{aligned}
$$

Wisconsin Department of Public Instruction
Office of Educational Accountability
Step 3: Calculate the $8^{\text {th }}$ Grade Mathematics Achievement Score

Performance Level	Points Multiplier	2010-11			2011-12			2012-13		
		Students		Points	Students		Points	Students		Points
		Count	Percent		Count	Percent		Count	Percent	
Advanced	1.5	4	21.1\%	6	3	16.7\%	4.5	3	14.3\%	4.5
Proficient	1	6	31.6\%	6	5	27.8\%	5	7	33.3\%	7
Basic	0.5	5	26.3\%	2.5	6	33.3\%	3	8	38.1\%	4
Minimal Performance	0	4	21.1\%	0	4	22.2\%	0	3	14.3\%	0
Total Tested	-	19	100.0\%	14.5	18	100.0\%	12.5	21	100.0\%	15.5

Step 3A: Assign and Average Points
Prior Year 2 Average $=14.5 / 19=\mathbf{0 . 7 6 3}$
Prior Year 1 Average $=12.5 / 18=\mathbf{0 . 6 9 4}$
Current Year Average $=15.5 / 21=\mathbf{0 . 7 3 8}$

Step 3B: Calculate Annual Weights

$$
\text { Prior Year } 2 \text { Weight }=1 \times \frac{19}{(19+18+21) / 3}=\mathbf{0 . 9 8 3}
$$

Prior Year 1 Weight $=1.25 \times \frac{18}{(19+18+21) / 3}=\mathbf{1 . 1 6 4}$
Current Year Weight $=1.5 \times \frac{21}{(19+18+21) / 3}=\mathbf{1 . 6 2 9}$
Step 3C: Combine Points and Weights
Prior Year 2 Score $=0.763 \times 0.983=\mathbf{0 . 7 5 0}$
Prior Year 1 Score $=0.694 \times 1.164=\mathbf{0 . 8 0 8}$
Current Year Score $=0.738 \times 1.629=\mathbf{1 . 2 0 2}$
Step 3D: Calculate Component Score
With ACT participation and performance and $3^{\text {rd }}$ grade reading achievement present for the school, the possible score for this component is 5 points:

8th Grade Mathematics Achievement Score $=\frac{0.750+0.808+1.202}{0.983+1.164+1.629} \times 5=3.7$

Wisconsin Department of Public Instruction
Office of Educational Accountability
Step 4: Calculate the $3^{\text {rd }}$ Grade Reading Achievement Score

Performance Level	Points Multiplier	2010-11			2011-12			2012-13		
		Students		Points	Students		Points	Students		Points
		Count	Percent		Count	Percent		Count	Percent	
Advanced	1.5	7	31.8\%	10.5	3	17.6\%	4.5	6	31.3\%	9
Proficient	1	10	45.5\%	10	8	47.1\%	8	6	43.8\%	6
Basic	0.5	3	13.6\%	1.5	4	23.6\%	2	3	18.8\%	1.5
Minimal Performance	0	2	9.1\%	0	2	11.8\%	0	1	6.3\%	0
Total Tested	-	22	100.0\%	22	17	100.0\%	14.5	16	100.0\%	16.5

Step 4A: Assign and Average Points
Prior Year 2 Average $=22 / 22=\mathbf{1 . 0 0 0}$

Prior Year 1 Average $=14.5 / 17=\mathbf{0 . 8 5 3}$

Current Year Average $=16.5 / 16>\mathbf{1 . 0 0 0}$

Note: Remember that the average has a ceiling of one-the true average for the current year is $1.031(16.5 / 16)$ but we use 1.000 in the calculation.

Step 4B: Calculate Annual Weights

$$
\begin{aligned}
& \text { Prior Year } 2 \text { Weight }=1 \times \frac{22}{(22+17+16) / 3}=\mathbf{1 . 2 0 0} \\
& \text { Prior Year } 1 \text { Weight }=1.25 \times \frac{17}{(22+17+16) / 3}=\mathbf{1 . 1 5 9} \\
& \text { Current Year Weight }=1.5 \times \frac{16}{(22+17+16) / 3}=\mathbf{1 . 3 0 9}
\end{aligned}
$$

Step 4C: Combine Points and Weights

Prior Year 2 Score $=1.000 \times 1.200=\mathbf{1 . 2 0 0}$

Prior Year 1 Score $=0.853 \times 1.159=\mathbf{0 . 9 8 9}$

Current Year Score $=1.000 \times 1.309=\mathbf{1} .309$

Step 4D: Calculate Component Score

With ACT participation and performance and $8^{\text {th }}$ grade mathematics achievement present for the school, the possible score for this component is 5 points:

$$
\text { 3rd Grade Reading Achievement Score }=\frac{1.200+0.989+1.309}{1.200+1.159+1.309} \times 5=\mathbf{4 . 8}
$$

Wisconsin Department of Public Instruction
Office of Educational Accountability

Step 5: Determine the Total On-Track and Postsecondary Readiness Score

Graduation/Attendance Score	72.4
ACT Participation and Performance Score	6.7
8th $^{\text {th }}$ Grade Mathematics Achievement Score	3.7
3 $^{\text {rd }}$ Grade Reading Achievement Score	+
Total On-Track and Postsecondary Readiness	
Score	$\mathbf{8 7 . 6}$

Sample K-12 School has an On-Track and Postsecondary Readiness score of 85.5.

On-Track and Postsecondary Readiness Priority Area Worksheet

Introduction

This worksheet has four parts, for Graduation/Attendance, ACT Participation and Performance, $8^{\text {th }}$ Grade Mathematics Achievement, and $3^{\text {rd }}$ Grade Reading Achievement. Each part requires you to copy data from the On-Track and Postsecondary Readiness detail on pages 8 and 9 of the school report card, and your school may not have data for every component-we only report data for components that have scores. Note that the score calculated here may not exactly match the report card due to rounding. The key on page 14 of this document may be used to help read the $8^{\text {th }}$ grade mathematics $/ 3^{\text {rd }}$ grade reading tables.

Instructions

Complete the following worksheet only for the components of On-Track and Postsecondary Readiness with data on your school's report card. Remember that only one of attendance or graduation-not both-is used to calculate that portion of the score, which is worth up to 80 points. Use this grid to determine the number of possible points for each of the other On-Track components:

Possible points for 'Other' On-Track components

$\mathbf{3}^{\text {rd }}$ Grade Reading	Alone	$\mathbf{2 0}$ points
	With $\mathbf{8}^{\text {th }}$ grade mathematics	$\mathbf{1 0}$ points
	With both $8^{\text {th }}$ grade mathematics and ACT participation \& performance	$\mathbf{5}$ points
	Alone	$\mathbf{2 0}$ points
	With $\mathbf{3}^{\text {rd }}$ grade reading	$\mathbf{1 0}$ points
	With ACT participation \& performance	$\mathbf{1 0}$ points
	With both $3^{\text {rd }}$ grade reading and ACT participation \& performance	$\mathbf{5}$ points
ACT Participation and Performance	Alone	With $\mathbf{3}^{\text {rd }}$ grade reading and/or $\mathbf{8}^{\text {th }}$ grade mathematics

Total the components calculated for your school to determine the total Priority Area score:
Graduation/Attendance Score: \qquad out of 80 points

ACT Participation and Performance Score: \qquad out of \qquad points
$8^{\text {th }}$ Grade Mathematics Achievement Score: \qquad out of \qquad points $3^{\text {rd }}$ Grade Reading Achievement Score: $\quad+\ldots$ out of___ points Total On-Track and Postsecondary Readiness Score: \qquad out of \qquad points

Graduation/Attendance Worksheet

Calculate the Graduation/Attendance Score

(1a) Does the school have a reported graduation rate(s)?
1a\square No
(1b) If 1a is "No," enter the attendance rate (in \%):
(1c) Divide 1b by 100:
(1d) If 1 a is "Yes," enter the 4-year cohort graduation rate (in \%):
(1e) If 1a is "Yes," enter the 6-year* cohort graduation rate (in \%):
(1f) Add 1d and 1e:
(1g) Divide 1 f by 200:
(1h) Enter whichever of 1 c or 1 g has a value:
(1i) Graduation/Attendance Score: Multiply 1h by 80:

ACT Participation and Performance Worksheet

Calculate the ACT Participation and Performance Score

(1a) Enter the number of $12^{\text {th }}$ graders tested on the ACT:
(1b) Enter the percent of $12^{\text {th }}$ graders tested on the ACT:
(1c) Is 1 a , the number of tested students, 20 or more?

1c \square Yes \square No If "No," skip lines 1d through 1g and enter the value for 1b in 1h
(1d) Enter the percent tested meeting the Reading benchmark:
(1e) Enter the percent tested meeting the English benchmark:
(1f) Enter the percent tested meeting the Mathematics benchmark:
(1g) Enter the percent tested meeting the Science benchmark:
(1h) Add 1b and 1d through 1g:
(1i) Divide 1 h by 500 if 1 c is "Yes" or 100 if 1 c is "No":
(1j) Enter the number of possible points:
(1k) ACT Participation \& Performance Score: Multiply 1 i by 1 j :

$8^{\text {th }}$ Grade Mathematics Achievement Worksheet

Step 1: Assign and Average Points

If a year does not have data shown, leave that year's boxes blank.
Prior Year 2 Average
(1a) Total points earned (B)
(1b) Count of students tested (A)
(1c) Is 1a greater than 1 b ?
(1d) Average: If 1 c is "Yes," enter 1 ; if 1 c is "No," divide 1a by 1 b
1d
Prior Year 1 Average
(1e) Total points earned (D)
(1f) Count of students tested (C)
(1g) Is 1 e greater than 1 f ?
1g \square Yes \square No
(1h) Average: If 1 g is "Yes," enter 1 ; if 1 g is "No," divide 1e by $1 \mathrm{f} \quad 1 \mathrm{~h}$

Wisconsin Department of Public Instruction
Office of Educational Accountability

Current Year Average
(1i) Total points earned (F)
(1j) Count of students tested (E)
(1k) Is 1 i greater than 1 j ?

1k
 \square Yes \square No
(1) Average: If 1 k is "Yes," enter 1 ; if 1 k is "No," divide 1 i by 1 j

Step 2: Calculate Annual Weights

Average Enrollment
(2a) Prior Year 2 count of students tested (A) - leave blank if not shown
(2b) Prior Year 1 count of students tested (C) - leave blank if not shown
(2c) Current Year count of students tested (E)
(2d) Add 2a through 2c
(2e) How many of 2a through 2 c have values?
(2f) Average number tested: Divide 2d by 2 e

Prior Year 2 Weight
$(2 \mathrm{~g})$ Is 2a blank? $\quad 2 \mathrm{~g} \square$ Yes \square No If "Yes," move on to the "Prior Year 1 Weight" section.
(2h) Enter the count from $2 a$
(2i) Enter the average from $2 f$
(2j) Prior Year 2 Weight: Divide 2 h by 2 i

Prior Year 1 Weight
(2k) Is $2 b$ blank? $\quad 2 k \square$ Yes \square No If "Yes," move on to the "Current Year Weight" section.
(2l) Enter the count from $2 b$
(2m) Enter the average from $2 f$
(2n) Divide 21 by $2 m$
(2o) If 2 g is "Yes," enter 1 ; if 2 g is "No," enter 1.25
(2p) Prior Year 1 Weight: Multiply $2 n$ by 20

Current Year Weight
(2q) Are both $2 a$ and $2 b$ blank?
2q\square No

Step 3: Combine Points and Weights
If a year does not have data, leave that year's boxes blank.
Prior Year 2 Score
(3a) Enter the average from 1d
(3b) Enter the weight from 2 j
(3c) Prior Year 2 Score: Multiply 3a by 3b

Prior Year 1 Score
(3d) Enter the average from 1 h
(3e) Enter the weight from 2p
(3f) Prior Year 1 Score: Multiply 3d by 3e

Wisconsin Department of Public Instruction
Office of Educational Accountability

Current Year Score
(3g) Enter the average from 11
(3h) Enter the weight from 2 t
(3i) Current Score: Multiply $3 g$ by 3 h

Step 4: Calculate Index Score

(4a) Enter the score from 3c
(4b) Enter the score from $3 f$
(4c) Enter the score from 3i
(4d) Add 4a through 4c

$4 a$
$4 b$
$4 c$
$4 d$

(4e) Enter the weight from $2 j$
(4f) Enter the weight from $2 p$
(4g) Enter the weight from $2 t$
(4h) Add $4 e$ through $4 g$
(4i) Divide 4d by 4h
(4j) Enter the number of possible points
(4k) $8^{\text {th }}$ Grade Mathematics Achievement Score: Multiply $4 i$ by $4 j$

4 e
4 e
4 f
4 g
4 h
4 i
4 j
by 4 j

$3^{\text {rd }}$ Grade Reading Achievement Worksheet

Step 1: Assign and Average Points

If a year does not have data shown, leave that year's boxes blank.
Prior Year 2 Average
(1a) Total points earned (B)
(1b) Count of students tested (A)
(1c) Is 1a greater than 1 b ?
1c

1 a
1 b
\square Yes \square No

(1d) Average: If 1 c is "Yes," enter 1 ; if 1 c is "No," divide 1a by 1 b
Prior Year 1 Average
(1e) Total points earned (D)
(1f) Count of students tested (C)
(1g) Is 1 e greater than 1 f ?
1 g

(1h) Average: If 1 g is "Yes," enter 1 ; if 1 g is "No," divide 1 e by 1 f

Current Year Average

(1i) Total points earned (F)
(1j) Count of students tested (E)
(1k) Is 1 i greater than 1 j ?
1k

(1) Average: If 1 k is "Yes," enter 1 ; if 1 k is "No," divide 1 i by 1 j
Yes \square No 11

Step 2: Calculate Annual Weights

Average Enrollment
(2a) Prior Year 2 count of students tested (A) - leave blank if not shown
(2b) Prior Year 1 count of students tested (C) - leave blank if not shown
(2c) Current Year count of students tested (E)
(2d) Add 2a through 2c
(2e) How many of $2 a$ through $2 c$ have values?
(2f) Average number tested: Divide 2 d by 2 e

Wisconsin Department of Public Instruction
Office of Educational Accountability

Prior Year 2 Weight
$(2 g)$ Is 2a blank? $2 \mathrm{~g} \square$ Yes \square No If "Yes," move on to the "Prior Year 1 Weight" section.
(2h) Enter the count from 2a
(2i) Enter the average from $2 f$
(2j) Prior Year 2 Weight: Divide 2 h by 2 i

Prior Year 1 Weight
(2k) Is $2 b$ blank? $\quad 2 k \square$ Yes \square No If "Yes," move on to the "Current Year Weight" section.
(2l) Enter the count from $2 b$
(2m) Enter the average from $2 f$
(2n) Divide 21 by $2 m$
(2o) If 2 g is "Yes," enter 1 ; if 2 g is "No," enter 1.25
(2p) Prior Year 1 Weight: Multiply $2 n$ by $2 o$

Current Year Weight

(2q) Are both $2 a$ and $2 b$ blank?
2q\square No

Step 3: Combine Points and Weights

If a year does not have data, leave that year's boxes blank.
Prior Year 2 Score
(3a) Enter the average from 1d
(3b) Enter the weight from 2 j
(3c) Prior Year 2 Score: Multiply 3a by 3b

Prior Year 1 Score
(3d) Enter the average from 1 h
(3e) Enter the weight from 2p
(3f) Prior Year 1 Score: Multiply 3d by 3e

Current Year Score
(3g) Enter the average from 11
(3h) Enter the weight from 2t
(3i) Current Score: Multiply 3g by 3h

Step 4: Calculate Index Score

(4a) Enter the score from 3c
(4b) Enter the score from $3 f$
(4c) Enter the score from 3 i
(4d) Add 4a through 4c

(4e) Enter the weight from 2 j
(4f) Enter the weight from $2 p$
(4g) Enter the weight from 2 t
(4h) Add 4e through 4g
(4i) Divide 4d by 4h
(4j) Enter the number of possible points
(4k) $3^{\text {rd }}$ Grade Reading Achievement Score: Multiply $4 i$ by $4 j$

Calculating Student Engagement Indicator Deductions

Some measures in our school accountability system do not show a wide range of variation between schools, but rather allow us to identify the small number of schools whose performance raises concern. Instead of including these measures within one of the Priority Areas, we place them into a separate category called Student Engagement Indicators. Failure to meet specific statewide goals for these indicators results in points being deducted from the school's weighted average Priority Areas score. The weighted average Priority Areas score minus any Student Engagement Indicator deductions equals the school's Overall Accountability Score.

The three Student Engagement Indicators are:

- Test Participation: With so much of the Accountability Index based on assessment data, it is important that schools test as many students as possible. The goal is for schools to test at least 95 percent of each and every group of students in the school in both the reading and mathematics assessments, as measured by either a one-year or multi-year test rate, whichever is more favorable. A school's performance is determined by the lowest participation rate among all groups in either content area. See the "Determining the Deduction" section of the Participation walkthrough below for more detail.

If a school's test participation rate is below the goal of 95 percent but is at least 85 percent, the school score is reduced by 5 points. If a school's rate is below 85 percent, its score is reduced by 10 points.

- Absenteeism Rate: Chronic absenteeism is a strong predictor of whether a student will struggle in the future or fail to graduate. For this Student Engagement Indicator, the school's absenteeism rate is equal to the percentage of its students who are chronically absent. Chronically absent means a student missed school at least 16 percent of the time. The goal for this Student Engagement Indicator is a school absenteeism rate of less than 13 percent-that is, less than 13 percent of a school's students were chronically absent as measured by either a oneyear or multi-year rate, whichever is more favorable.

If a school's absenteeism rate is 13 percent or more, the school's score is reduced by 5 points.

- Dropout Rate: Dropping out of school has a direct connection with a student's future success. The goal for this Student Engagement Indicator is a dropout rate of less than 6 percent.

If a school has a dropout rate of 6 percent or more, its school score is reduced by 5 points.
Each missed indicator results in a separate deduction from the weighted average Priority Areas score. For example, a school that misses the goals for absenteeism rate and dropout rate would be penalized 10 points.

The School Report Card Detail does not contain enough data in order to reproduce the exact calculations for the Student Engagement Indicators, so no worksheet is provided for these measures. Instead, this section will describe in detail the process by which each of the student engagement indicators are calculated.

Test Participation

As stated above, the test participation engagement indicator is tiered into three levels:

- Meeting the goal: participation greater than or equal to 95% for all each and every group in both math and reading, resulting in no deduction;
- Failing to meet the goal: participation rate is less than 95% but greater than or equal to 85% for at least one group in either math or reading, resulting in a 5 point deduction;
- Failing to meet the lower threshold: participation rate is less than 85% for at least one group in either math or reading, resulting in a 10 point deduction.

Remember that groups can meet test participation thresholds based on the higher of the current year rate or a multi-year rate. The multi-year participation rate is calculated based on the number of years in which a school has at least 20 students enrolled in tested grades. For the vast majority of schools, the multi-year participation rate will be calculated using participation data from the last three years; however, some schools' multi-year participation rates will be calculated using the last two years. Schools in which there are at least 20 students enrolled in tested grades in only the current year will use only the current year's participation rates for determining whether or not the school met the goal.

Calculating Test Participation in the Current Year

To calculate test participation for the current year, follow the steps below:

1. Count the total number of students enrolled in tested grades at test time in the current year. This should be done at the "All Students" level and for each group of students.
2. Count the total number of students who took either the WKCE or the WAA. This should be done at the "All Students" level and for each group of students. This step should be done separately for both math and reading. For students for whom this was their first year in country, participation in the ACCESS for English Language Learners test may be used in place of participation on the reading section of the WKCE or WAA.
3. To derive each group's current year participation rate, divide the number of students tested (the count from Step 2) by the number of students enrolled (the count from Step 1). This should be done at the "All Students" level, and for each group of students. This step should be done separately for both mathematics and reading.
4. Apply traditional rounding rules, and remember that for test participation, values are rounded to the nearest whole number - for example, if a group had at least 20 students enrolled and its participation rate in mathematics was 94.8%, its participation rate in mathematics would round up to 95%, and the group would be considered to be meeting the goal.

Calculating Test Participation over Multiple Years

To calculate test participation for the multi-year rate, follow the following steps:

1. Count the total number of students enrolled in tested grades at test time in each of the last three years. This should be done at the "All Students" level and for each group.
2. If there were at least 20 students enrolled in tested grades in each of the last three years, then test participation will be calculated using three years of data. If there were at least 20 students enrolled in tested grades in each of the last two years, then test participation will be calculated using two years of data. If there were at least 20 students enrolled in tested grades in only the current year, then test participation will be calculated using only the current year's data.
3. For each year going into the multi-year rate: Count the total number of students who took either the WKCE or the WAA. This should be done at the "All Students" level and for each group. This step should be done separately for both mathematics and reading. For each year, for students for whom that year was the first year in country, participation in the ACCESS for English Language Learners test may be used in place of participation on the reading section of the WKCE or WAA.
4. Sum the counts from Steps 1 and 3:
a. If the school is using three years of participation data (as determined in Step 2), sum the total number of students enrolled in each of the last three years (the counts from Step 1) and the total number of students tested in each of the last three years (the counts from Step 3). This should be done at the "All Students", and for each individual group. This step should be done separately for mathematics and reading. Note that when three years of data are being used, each of the three years in the calculation must meet the cell size of 20.
b. If the school is using two years of participation data (as determined in Step 2), sum the total number of students enrolled in each of the last two years (the counts from Step 1) and the total number of students tested in each of the last two years (the counts from Step 3). This should be done at the "All Students", and for each individual group. This step should be done separately for mathematics and reading. Note that when two years of data are being used, each of the two years in the calculation must meet the cell size.
5. Derive each group's participation rate by dividing the number of students tested (the count of students tested derived in Step 4) by the number of students enrolled (the count of students enrolled derived in Step 4). This should be done at the "All Students" level, and for each group of students. This step should be done separately for both math and reading.
6. Apply the cell size to each group:
a. If the school is using three years of data, the count of students enrolled in a group (derived in Step 4) must be at least 20 for each of the years in the calculation in order for that group's multi-year participation rate to be calculated.
b. If the school is using two years of data, the count of students enrolled in a group (derived in Step 4) must be at least 20 for each of the years in the calculation in order for that group's multi-year participation rate to be calculated.
7. Apply traditional rounding rules, and remember that for test participation, values are rounded to the nearest whole number-for example, if a group's multi-year participation rate in mathematics was 94.8%, this would round up to 95%, and the group would be considered to be meeting the goal.

Determining the Deduction

Once both the current year participation rates and the multi-year participation rates have been calculated, take the following steps for the "All Students" group and for each individual group of students:

1. For both the current year and the multi-year participation rates, take the lower of the mathematics and reading participation rates - this is the participation rate that counts towards the goal. For example, if the current year mathematics participation rate for White students is 93.7% and the current year reading participation rate for White students is 95.1%, the participation rate that counts towards the current year goal for White students is the mathematics participation rate (93.7%). Use the same process for the multi-year rate.
2. If the group's current year lowest participation rate and the group's multi-year lowest participation rate are below the 95% goal (after applying traditional rounding rules), a five point deduction will be taken from the school's Overall Accountability Score. If the group's current year lowest participation rate and the multi-year lowest participation rate are below the 85\% goal (after applying traditional rounding rules), a ten point deduction will be taken from the school's Overall Accountability Score. This step is calculated for every group present in the school. If any of the groups fail to meet both the current year goal and the multi-year goal, a deduction is taken.
3. Only one deduction will be taken from the school. For example, if a school has data for five groups, and three of the groups miss both the current year goal and the multi-year goal, the school does not experience three deductions; only one deduction is taken.
4. If the school has only one year of test participation data, no multi-year participation rates are calculated, and the steps described above are applied only to the current year's participation rates.

Abstract

Absenteeism Chronic absenteeism is a strong predictor of whether a student will struggle in the future or fail to graduate. For this Student Engagement Indicator, the school's absenteeism rate is equal to the percentage of its students who are chronically absent. For the purposes of this indicator, chronically absent is defined as a student who misses school at least 16 percent of the time. The goal for this

Student Engagement Indicator is a school absenteeism rate of less than 13 percent—that is, less than 13 percent of the school's students were chronically absent.

Remember that a school can meet the absenteeism rate goal for the current year rate or a multi-year rate if data are available for both of these. The multi-year absenteeism rate is calculated based on the number of years in which a school has at least $\mathbf{2 0}$ students enrolled in tested grades. For the vast majority of schools, the multi-year absenteeism rate will be calculated using absenteeism data from the last three years; however, some schools' multi-year absenteeism rate will be calculated using the last two years. Schools in which there are at least 20 students enrolled in only the current year will use only the current year's absenteeism rate for determining whether or not the school met the goal.

Calculating Absenteeism Rate in the Current Year

To calculate your school's current year absenteeism rate, use the following steps:

1. Count the number of students who enrolled in your school for at least 45 days at any time during the prior school year. Enrollment data come from ISES year end data, and due to data collection timelines, DPI must use the prior year's enrollment and attendance data to calculate the absenteeism rate.
2. For each individual student derived in Step 1, calculate that student's attendance rate. This is done by dividing the total number of days the student attended school by the total number of possible days the student could have attended school. Note that DPI does not have data on excused versus unexcused absences - it is the district's responsibility to ensure that attendance days are being recorded and reported in accordance with DPI guidelines.
3. Count the number of students whose attendance rate is 84.0% or below. These students are flagged as being chronically absent. Apply traditional rounding rules to the attendance rate - for example, an attendance rate of 84.05% would round up to 84.1%, and the student would not be flagged as chronically absent.
4. Divide the count of students flagged as chronically absent (Step 3) by the count of enrolled students (Step 1). This is the school's current year absenteeism rate. Note that no rounding takes place when calculating the absenteeism rate - for example, if a school's absenteeism rate is 12.9%, it will not be rounded up to 13%.

Calculating Absenteeism Rate over Multiple Years

To calculate multi-year absenteeism rate, follow the following steps:

1. Count the number of students who enrolled in your school for at least 45 days in a given year for each of the prior three years. For example, if a student was enrolled for 45 days in the current year and 45 days in the prior year that student would be considered separately for each year. Enrollment data come from ISES year end data, and due to data collection timelines, DPI must use the prior year's enrollment and attendance data to calculate the absenteeism rate.
2. For each individual student derived in Step 1, calculate that student's attendance rate in each year. This is done by dividing the total number of days the student attended school in a given year by the total number of possible days the student could have attended school in that year.
3. Count the number of students whose attendance rate is $\mathbf{8 4 . 0 \%}$ or below. Each year that their attendance rate is 84.0% or below is counted separately. For example, if a student's attendance rate was 84.0% or below in the current year and 84.0% or below in the prior year that student would be counted twice as being chronically absent. Apply traditional rounding rules to the attendance rate - for example, an attendance rate of 84.05% would round up to 84.1%, and the student would not be flagged as chronically absent.
4. Divide the count of students flagged as chronically absent (Step 3) by the total count of enrolled students across the three years (Step 1). This is the school's multi-year absenteeism rate. Note that no rounding takes place when calculating the absenteeism rate - for example, if a school's absenteeism rate is 12.9%, it will not be rounded up to 13%.

Determining the Deduction

Once both the current year absenteeism rate and the multi-year absenteeism rate have been calculated, take the following steps:

1. If the school's current year absenteeism rate and the school's multi-year absenteeism rate are greater than or equal to 13%, a five point deduction will be taken from the school's Overall Accountability Score.
2. If the school has only absenteeism data for the current year and the current year absenteeism rate is greater than or equal to 13%, a five point deduction will be taken from the school's Overall Accountability Score.
3. If the school has only absenteeism data for the multi-year and the multi-year absenteeism rate is greater than or equal to 13%, a five point deduction will be taken from the school's Overall Accountability Score.

Dropout

Dropping out of school has a direct connection with a student's future success. The goal for this Student Engagement Indicator is a dropout rate of less than 6 percent.

To calculate your school's dropout rate, use the following steps:

Calculating the Dropout Rate for the Current Year

1. Count the number of students who enrolled in your school who were in $7^{\text {th }}$ grade or above in the prior year. Note that due to ISES data collection timelines, the prior year's data must be used when calculating the dropout rate.
2. Count the number of students who were considered to be either half-term or full-term dropouts in the prior year.
3. Divide the count of total dropouts (derived in Step 2) by the count of total students (derived in Step 1). This is the school's current year dropout rate. Note that no rounding takes place when calculating the dropout rate - for example, if a school's dropout rate is 5.9%, it will not be rounded up to 6%. This school would be considered to be meeting the goal.

Calculating the Dropout Rate over Multiple Years

1. Count the number of students who enrolled in your school who were in $7^{\text {th }}$ grade or above in the three prior years. Note that due to ISES data collection timelines, the prior year's data must be used when calculating the dropout rate.
2. Count the number of students who were considered to be either half-term or full-term dropouts in the three prior years.
3. Divide the count of total dropouts (derived in Step 2) by the count of total students (derived in Step 1). This is the school's multi-year dropout rate. Note that no rounding takes place when calculating the dropout rate - for example, if a school's dropout rate is 5.9%, it will not be rounded up to 6%. This school would be considered to be meeting the goal.

Determining the Deduction

1. Once both the current year absenteeism rate and the multi-year absenteeism rate have been calculated, take the following steps:
2. If the dropout rate from Step 3 for both the Current Year and Multi-Year is 6\% or above, a five point deduction will be taken from the school's Overall Accountability Score.
