Interrupting Bias in Problem-solving Teams

Instructions

1. Individually select and read:

 * I am interested in vulnerable decisions points related to...

<table>
<thead>
<tr>
<th>Problem-solving team</th>
<th>Turn to page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication among team members</td>
<td>2</td>
</tr>
<tr>
<td>Description of the problem/Target problem</td>
<td>3-6</td>
</tr>
<tr>
<td>Identification of hypothesis for target</td>
<td>7-8</td>
</tr>
<tr>
<td>Data collection/Data interpretation</td>
<td>9-12</td>
</tr>
<tr>
<td>Intervention selection/Responsiveness</td>
<td>13-14</td>
</tr>
</tbody>
</table>

2. Turn and talk:

 Suggested prompts include...

 - I read about...
 - It made me think about...
 - How I might introduce this content and strategies to a specific problem-solving team...

 Total time: 20 minutes
Interrupting Bias in Problem-solving Teams
Markeda Newell, PhD Loyola University, Chicago

Vulnerable Decision Point: Communication among Team Members
In order for problem-solving teams to ensure they are maximizing learning opportunities for every student, they must understand how to problem solve within the diverse cultural context of schools. Increasingly, educators are realizing that cultural differences are a factor in how we perceive and understand human behavior and functioning. Cultural differences are generally viewed as group level differences that are borne out of a group’s traditions, beliefs, and norms. These cultural beliefs can influence educators’ perspectives on behavior, academic performance, mental health, or any other aspect of education. Differences in cultural beliefs can make it difficult for problem-solving teams to agree on the problem as well as how to intervene to remedy the problem. It is important to note that cultural differences do not just occur between educators and students and families, but can also manifest among educators or between educators and administrators.

To explain, each person in the school (e.g., students, teachers, administrators, etc.) has a unique cultural identity that influences how they think, feel, behave as well as how they view and interpret the world. Moreover, the school and the larger community also have a culture. Therefore, problem-solving team members must examine how their beliefs and values impact their view of students, families, and each other.

The primary concern is the development of shared stereotypes, biases, and prejudices that can cause team members to develop deficit-based views. Deficit-based thinking can make typical behavior appear atypical, and individual and cultural expressions appear as disorder rather than difference. When we have deficit-based views of students and families, we immediately diminish the opportunity for effective problem-solving and increase the likelihood that we will further marginalize the student and the family from the educational process. For these reasons, educators cannot ignore their own cultural beliefs, values, and experiences in the problem-solving process; instead, educators must identify them and examine how they influence the identification of problems as well as the design of solutions.

Becoming culturally competent is an aspirational goal, which means there is no endpoint. Therefore team members need to commit to continually learn about themselves and others to expand and deepen their competence. The development of cultural competence begins with work on self. Each team member must reflect on the experiences, values, attitudes and beliefs that shape who they are and identify their own biases. Implicit bias refers to unconscious attitudes or stereotypes held about people of different groups (e.g., race, gender, sexual orientation, income, religion, etc.) (Greenwald, Banaji, 1995). Rudman (2004) explained that implicit biases could emerge from past experiences such as rearing by families, affective experiences such as having inter racial friendships, or cultural biases such as stereotypes learned from media. Therefore, all team members are susceptible to holding implicit biases that can influence decision making (Staat, 2014).

To begin the culturally responsive team process, teams must establish norms and expectations for how members will communicate with each other. Establishing communication norms is especially important in culturally responsive problem-solving because difficult topics such as race, income, sexual orientation, religion, etc. are central to many discussions. In the context of these discussions, team members may unintentionally make statements that may offend another team member. These offensive statements are usually in the form of microaggressions. Microaggressions are slights or insults that degrade the identity or heritage of others; oftentimes these degradations are targeted towards the identities of historically underserved groups (e.g., students of color, women, LGBQ, transgender students, students living in poverty, English language learners, etc). For example, a team member may state that people who live in poverty do not value education and another team member may have either grown up in poverty or is currently living in poverty. Thus, this statement is an insult (i.e. microaggression) to that team member, and that team member may be saddened or angered by that statement and disengage from the problem-solving process.
Interrupting Bias in Problem-solving Teams

Vulnerable Decision Point: Description of the Problem

Guiding Question: Did we consider perspectives other than the initial presentation of the student concern?

How Implicit Bias Shows Up: During the team process, team members tend to agree with the initial presentation of the problem, which is typically focused on the student (Knotek, 2003). As a result, teams oftentimes adopt the initial view that the student is the problem. To explain, if team members hold an implicit bias that African-American boys are violent, then a concern about an African-American student being disruptive is more likely to be accepted without question. When teams adopt the initial perspective presented, it is referred to as confirmatory bias. Confirmatory bias is the tendency of an evaluator to agree with the preliminary hypothesis... despite the lack of substantial evidence to support these findings (O’Reilly, Northcraft, Sabers, 1989, p. 1). Students who are members of historically underrepresented groups are especially impacted by confirmatory bias because teams do not often recognize the nature of the biases that brought the concern to the problem-solving team (Knotek, 2003). As a result, the team reifies this bias in the problem-solving process. When team members engage in confirmatory bias, they do not consider a variety of perspectives on the problem. In this example, the team may disregard that the problem potentially lies with instruction, management, and/or curriculum, rather than within the student.

Strategies to Interrupt Bias: To consider other perspectives, teams seek out comprehensive information about the learning ecology instead of only considering information about the student’s skills and/or behavior because the problem could lie in the learning ecology and not within the student. To obtain a comprehensive view of the problem, teams should obtain information about instruction, classroom management, curriculum/tasks, and the performance of other students in the class. These data can be used to identify whether the student is significantly different from peers or if there are other students who are exhibiting the same difficulties. If other students are experiencing the same difficulties then the problem is less likely to lie with the student; instead, the problem more likely lies with the overall instruction, curriculum, and/or management and thus would warrant a group or class wide intervention approach. Use the following strategies to discern where the problem lies:

Strategy 1: Interview teacher about classroom management and/or instruction

Proposed Interview Questions on Classroom Management

- Describe the classroom management plan.
- How do the students in your class respond to the management plan?
- How does this student’s behavior compare to other students in the class? (Note: It is important to make appropriate peer comparisons. Identify and compare peers who are similar to the target student e.g., race, ethnicity, gender, language proficiency, academic skills, etc.)
- How does the target student respond to the management plan?
- How might the management plan contribute to the problem?
- How can the management plan be modified to better meet the needs of the student?

Proposed Interview Questions on Instruction/Curriculum

- What instructional strategies are used to teach [Insert Subject Area]?
- How do the students in your class respond to these instructional strategies?
- How does the target student respond to the instruction?
- How does this student’s academic performance compare to other students in the class? (Note: It is important to make appropriate peer comparisons. Thus, identify and compare peers who are similar to the target student e.g., race, ethnicity, gender, language proficiency, academic skills, etc.)
- How might the instruction or curriculum contribute to the problem?
- How can the instruction or curriculum be modified to better meet the needs of the student?
Interrupting Bias in Problem-solving Teams

Strategy 2: Obtain data on management and instruction
Team reviews office disciplinary referrals from the classroom
Team reviews discipline data from the classroom (e.g., detentions)
Team reviews academic data from the classroom to determine how all students are performing (e.g. MAP, DIBELS, etc.)

Strategy 3: Obtain data on student’s performance in other settings
Ask other adults about the performance of the student in settings outside of the classroom (e.g. recess, cafeteria, other classes, etc.).
Interrupting Bias in Problem-solving Teams

Vulnerable Decision Point: Identification of the Target Problem

Guiding Question: Did we operationalize a target problem focused on instruction, classroom management, student skills, and/or teacher skills?

How Implicit Bias Shows Up: A problem is defined as a discrepancy between current performance/behavior and desired performance/behavior. Identifying the target problem is a vulnerable decision point because the discrepancy between current and desired performance is oftentimes subjective, especially for behavior. As Smolkowski et al. (2016) explained, when behavior is subjective, educators are more likely to make decisions based on implicit biases rather than objective information. For example, an educator may present a concern to the team about a Hispanic male student who is lazy and not completing his work. Acting on confirmatory bias, the team does not ask questions to understand what the teacher means when she says the student is lazy and not completing his work. Instead, the team accepts the target concern and moves to develop an intervention.

In this scenario, the teacher and team are operating on a shared bias about the student being lazy and, as a result, no one questions the validity or accuracy of this description of the student. Moreover, the team has not defined what is meant by lazy and whether it is related to the student’s performance. In these cases, teams are less likely to collect appropriate data (i.e., How does one collect data on being lazy?) and are less likely to develop an appropriate intervention. Given this vulnerability, teams have to actively take steps to ensure that they are identifying an accurate problem that is relevant to student performance. For this reason, teams should ask themselves, did we operationalize a target problem that is focused on instruction, curriculum, classroom management, student skills, and/or teacher skills? To help achieve this goal, teams can use the following strategies.

Strategies to Interrupt Bias: To identify an accurate target problem, teams should first identify a problem that is focused on instruction, classroom management, student skills, and/or teacher skills because these are elements of the learning ecology that contribute most to student learning outcomes (Rosenfield, 2010). By focusing on the learning ecology, teams are more likely to identify a problem that is relevant to student academic success. Moreover, these are factors that educators can change to improve student success.

Strategy 1: Identify a problem focused on instruction, classroom management, student skills, and/or teacher skills

- Example of problem with instruction:
 The student is not responding to whole group instruction and would benefit from a different instructional approach.
- Example of problem with classroom management:
 The teacher is inconsistent in adhering to the behavior management plan; therefore, the students are unsure how the teacher will respond to misbehavior.
- Example of problem with student skills:
 The student lacks the phonemic awareness to accurately decode.
- Example of problem with teacher skills:
 The teacher does not know strategies to teach reading to English Learners; therefore, EL students are performing below grade level in reading.

Second, teams should operationalize the target problem, which means that the team identifies a behaviors and skills that are clearly observable and can be measured. Descriptors such as defiant, disruptive, low-performing, off-task, etc. are not operationalized because they are subject to a range of personal interpretation by team members. By operationalizing the problem, team members are required to describe these behaviors in descriptive terms, and can more easily identify when bias is influencing the identification of the target problem.
Strategy 2: Operationalize target behavior

Examples of operationalized target problems focused on the learning ecology

- Mary is able to accurately read 85 wpm, which is below the 3rd grade norm. She has difficulty decoding unknown words and often skips words.
- Johnny does not follow teacher directives within 1-minute of being given the directive. When given a directive, he will do something else or expressed reasons he should not have to comply with the directive.
- Ms. Smith is inconsistent in the delivery of consequences to students for behavior non-compliance. She ignores, raises her voice to redirect and sends students to the office for engaging in similar behavior non-compliance. As a result, the classroom behavior management system is inconsistent.
Interrupting Bias in Problem-solving Teams

Vulnerable Decision Point: Identification of a Hypothesis for the Target Problem

Guiding Question: Did we identify a low-inference, alterable and measurable hypothesis that explains why the problem is occurring?

How Implicit Bias Shows Up: A hypothesis is a reason why the problem is occurring. Identifying the reason why the problem is occurring is central to the problem-solving process because the intervention will target the hypothesis. The process of identifying a hypothesis is a vulnerable decision point because teams are susceptible to selecting hypotheses that are based on biases (Knotek, 2003). For example, teams may identify hypotheses that reflect biased views of the student and family, such as the family lives in poverty, the parent dropped out of school, the home environment is chaotic because too many people live in the home, no one cares about the student, the student is lazy, etc. In addition, teams may identify hypotheses that are not alterable such as the student lives in poverty, the student has a disability, the student has an incarcerated parent, etc. In both cases, the hypotheses deflect the team from identifying root causes that are within the school’s control and places the problem within the student and/or family. Given this vulnerability, teams should actively take steps to identify a hypothesis that is low-inference, alterable, and measurable.

A low-inference hypothesis is a cause that is directly linked to the problem; minimal interpretation is needed for the team to understand how cause and effect are connected. For example, one team problem-solving about a student exhibiting reading difficulties may hypothesize that the cause is the student’s low IQ; another team may hypothesize that the students’ reading difficulties stem from the amount and type of reading instruction received. In the first scenario, it is very difficult for the team to explain how low IQ leads to the specific reading difficulties the student is exhibiting; with the second, reading instruction most directly linked to the student’s reading skills and therefore represents a more proximal factor that is contributing the problem. Thus, reading instruction is low-inference, whereas low IQ is not.

In another example, a team may hypothesize that poverty is causing a student to yell at the teacher (even though no research links poverty to this behavior). The teacher’s management skills or student’s anger management skills, however, are more proximal factors that could be contributing to this problem. Thus, classroom management skills or anger management skills are low-inference, while poverty, or other aspects of student identity, is not.

In addition to being low-inference, a hypothesis should be alterable. This means that the identified cause should be a factor that educators can change. Alterable hypotheses focus on factors such as curriculum and instruction, classroom/behavior management, tasks/assignments, student skills, and/or teacher skills.

A final feature of hypotheses is that they can be measured or observed. This feature is key because teams will need to collect data on the hypothesis to determine whether it is linked to the problem. To explain, teams can observe instruction, management, and tasks to determine if they are contributing to the problem. Teams can also measure student and teacher skills to determine if they are contributing to the problem.

Examples of Low-Inference, Alterable, Measureable Hypotheses:

- Approximately 50% of Ms. Billings’ class is failing math because they are using a reading-based math curriculum and 40% of the students are receiving Tier 2 supports to improve their reading comprehension.
- Mark is completing 25% of his homework in reading because most of the assignments require access to a computer and Mark does not have access to a computer at home.
- Sue is completing her social studies assignments with 40% accuracy because she is an English Learner who does not have the academic vocabulary to understand the content.

The hypotheses in these examples (i.e. students having difficulty with reading comprehension, not having access to a computer, and not having academic vocabulary) are all observable, measurable hypotheses that educators can change.
Interrupting Bias in Problem-solving Teams

Strategies to Interrupt Bias:
Given the team’s vulnerability to identifying hypotheses based on biased or unalterable factors, teams should ask themselves, “Did we identify a low inference, alterable hypothesis that explains why the problem is occurring?” To help achieve this goal, teams can use the following strategies.

Strategy 1: Review the hypothesis and ask:
- Is the hypothesis low inference (i.e., a factor directly linked to the problem)?
- Is the hypothesis based on the learning ecology (i.e., problem with instruction, classroom/behavior management, tasks/assignments, student skills, and/or teacher skills)?
- Is the hypothesis based on a student and/or family deficit?

Any time the hypothesis is based on a deficit in some aspect of the student and/or family's identity (e.g., race, gender, SES, religion, sexual orientation), that is a stereotype or bias and should be reconsidered. If the team is unsure, ask the team member who made the suggestion to explain what they mean in order to help clarify whether the hypothesis is based on a stereotype or bias.

If the answer is no to any one of these questions, then the team should throw out this hypothesis and identify a reason that is low inference, based on the learning ecology (i.e., instruction, classroom/behavior management, tasks/assignments, student skills, and/or teacher skills), and not based on student/family deficit.

Strategy 2: Review the hypothesis and ask:
- Is the hypothesis alterable (i.e., factors we can change)?
- Is the hypothesis unalterable (e.g., poverty, grief, trauma, etc.) but relevant?

If the answer to the first question is “no” or the answer to the second question is “yes”, the team should revise the hypothesis to focus on factors within control of educators.

Students may be affected by grief, divorce, violence, trauma, etc., which are factors that the team cannot change. In these scenarios, teams should recommend interventions that can help the student cope with these circumstances (e.g., group and/or individual counseling).

Strategy 3: Review the hypothesis and ask:
- Is the hypothesis measurable or observable?

If the answer is no, the team should revise the hypothesis to identify factors that can be measured (i.e. teacher/student skills) and/or observed (i.e., instruction, management, curriculum).
Interrupting Bias in Problem-solving Teams

Vulnerable Decision Point: Collecting Data

Guiding Question: Did we use strategies to reduce the impact of our implicit biases on the collection of data?

How Implicit Bias Shows Up: Implicit bias can manifest during data collection when team members seek out data that aligns with their bias. For example, a team may have a case where a 14 year old, Hispanic female student is completing 50% of her work in math class. The team decides to collect data on the student’s English language proficiency and the percent of work the student has completed in the last 2 weeks. By collecting this data, the team is communicating a bias that because the student is Hispanic the problem has to be the student’s English language proficiency. As a result, the team has ignored a range of other important factors that could help explain the student’s performance (e.g., instruction, classroom management, mastery of math skills, etc.). Another example is when a team has a case in which a 12 year old, male transgendered student is talking back to his science teacher and not complying with the teacher’s directives. The team member suggests that the student may be misbehaving because he is transgendered, so the team member suggests the school counselor meet with the student to discuss how being transgendered is impacting his behavior. Based on this data collection, the team is assuming that the student’s identity (i.e., being transgendered) is causing the behavioral difficulties. However, the team has ignored a range of other potential factors (e.g., classroom management, academic frustration, bullying, etc.) that could be contributing to the behavior.

Given the potential for team members to seek out data based on biases, team members have to take steps to reduce the influence of their biases guiding the data they collect. For this reason, teams should ask themselves, “Did we use strategies (e.g., RIOT/ICEL) to reduce the impact of our implicit biases on the collection of data?”

Strategies to Interrupt Bias: To reduce the impact of biases on the data collection process, teams collect multidimensional data.

Strategy 1: Collect multidimensional data
Multidimensional data is collecting multiple types of data (e.g., interview, observations, tests, etc.) from multiple sources (e.g., general education teacher, parent, gym teacher, etc.) and settings (e.g., different classrooms, home, cafeteria, gym, etc.). As noted, it is ideal to collect data from the parent and student about the performance of the student at school and at home. The purpose of collecting multidimensional data is to ensure a broad range of factors that can impact student performance are considered because relying on too few sources can bias the problem-solving process (Wright, 2010).

To collect multidimensional data, use a systematic process for data collection. The RIOT/ICEL matrix is a tool that teams can use to ensure that they are collecting multiple types of data from multiple sources and settings. The RIOT component of the tool refers to sources or types of data that the team can collect. Those sources include:

Review - Any type of existing data such as work products, cumulative file, test data
Interview - People the team can interview such as parents, teachers, students
Observation - Different environments that the student is in such as classroom, cafeteria, recess, etc.
Test - Administering tests, such as curriculum based measures

Ideally, teams gather data from more than one of these sources. In addition to multiple types of data, the team gather data from multiple domains that can impact student performance. ICEL refers to these learning domains, and include:
Instruction - How the teacher teaches the content
Curriculum - The curriculum and tasks students complete
Environment - The settings that can impact student learning
Learner - Characteristics and traits of the student
Teams will not collect data from all sources and types, but the team should take steps to collect data from more than one source, setting, and domain to ensure that they are obtaining a comprehensive view of the student as well as the learning ecology.
Vulnerable Decision Point: Interpreting Data

Guiding Question: Did we consider all the data and identify convergence to verify the problem and confirm the hypothesis?

How Implicit Bias Shows Up: After teams gather multidimensional data, they interpret the data to verify the problem, confirm a hypothesis as to why the problem is occurring, and design an intervention that will improve the student’s performance. Herein lies a vulnerable decision point because implicit biases can influence how teams interpret data, even when it is multidimensional.

There are 4 common manifestations of bias during the interpretation of data:

Ignoring the data and instead relying on stereotypes, prejudice, and/or bias. Teams can collect multidimensional data, but they may not use it to guide decision making and instead rely on stereotypes, prejudice, and/or bias to guide decision making. For example, the multidimensional data could indicate that a student who lives in poverty has not received appropriate instruction in reading, which has led to reading comprehension difficulties. However, the team may ignore that data and instead focus on the fact that the student lives in poverty as the reason the student comprehends below grade level. With that interpretation, the team is likely to select an intervention that is not targeting the hypothesis that the data is communicating (i.e. lack of instruction).

Weighting some data more heavily than other types or sources of data. When collecting multidimensional data, teams collect multiple types of data from multiple sources. However, the team may weigh some types and sources more heavily than others due to bias. For example, a team may weigh test data more heavily than classroom work products. Or, teams may weigh teacher reports more heavily than parent or student reports. Unless there is a valid reason to dismiss a type or source of data, all data should be considered equally; bias should not guide how much teams value some data over others.

Taking a deficit-based view of the data. Teams may sometimes review data and only see what the student cannot do, what the student does not know, or what is wrong with the student/family. When this occurs, bias is leading to a deficit view of the student, and when this happens, student difficulties are viewed as being within person, pathological, and unalterable. As a result, teams conclude that there is nothing they can do to improve the student’s performance. Instead, teams should take a strengths-based approach to data interpretation, also identifying what students can do, what students do know, and the assets and strengths the student and family brings to the classroom.

Relying on one type of data instead of seeking convergence across multiple types and sources of data. When analyzing multidimensional data, teams should not rely on one source or type of data (e.g., teacher interview). Instead, teams should look across all data to identify points of convergence, which occurs when multiple pieces of data point to the same problem and hypothesis. If the data does not converge, then the team should re-evaluate the hypothesis, or collect additional data.

Strategies to Interrupt Bias: Given these vulnerabilities, teams should ask themselves, “Did we consider all the data and identify convergence to verify the problem and confirm the hypothesis?” To help teams achieve this goal, they can use the following strategy.

Ask the following questions during and after the discussion of data:

- Did we equally consider all the data? If not, what data did we not consider equally and why?
- Did the data tell us what the student can do as well as student strengths? If not, go back and review the data or gather additional data.
Interrupting Bias in Problem-solving Teams

- Did the data converge to confirm the problem?
- Did the data converge to confirm why the problem is occurring?
- Did the data tell us the following information?
 - The discrepancy between observed and desired performance (i.e., problem)
 - Reason why the problem is occurring (i.e., low inference, alterable, and measurable hypothesis)
Interrupting Bias in Problem-solving Teams

Vulnerable Decision Point: Selecting Evidence-Based Interventions

Guiding Question: Did we select an evidence-based intervention based on data?

How Implicit Bias Shows Up: After teams have verified the problem and confirmed the hypothesis, teams use the data to select an intervention. The reason selecting an intervention is a vulnerable decision point for teams is because teams oftentimes do not select interventions based on data, especially for historically underrepresented students. To explain, when selecting interventions for historically underrepresented students, teams rely on biases about the student and/or family to explain why the problem is occurring. As a result, the team is more likely to identify a narrower range of interventions and identify interventions that do not specifically address the target problem or hypothesis (Knotek, 2003).

In addition, teams will sometimes develop an intervention based on the target problem, but this is not the appropriate way to develop an intervention. For example, the target problem may be out of seat, so the team will design an intervention to get the student to stay in his seat (e.g., reward for staying in seat). However, the problem with this approach is that there can be a number of reasons why the student is out of his seat, so designing the intervention that just gets the student in his seat is inefficient and likely to be ineffective because the underlying cause (i.e., hypothesis was not addressed). Given this vulnerability, teams should ask themselves, “Did we select an evidence based intervention based on data, specifically the hypothesis data?”

Strategies to Interrupt Bias: As explained earlier, data should converge so that teams identify the correct problem as well as the reason why the problem is occurring (i.e., hypothesis). When the data converge on a reason the problem is occurring, teams design an intervention to address the reason the behavior is occurring (i.e. hypothesis). Interventions should address the reason why the behavior is occurring in order to effectively remediate the problem and improve the student’s performance. For example, if the data converge to say reading fluency is the reason a student comprehends below grade level then the intervention should be a reading fluency intervention. If the data converge to say a student is out of seat because she has not developed self-regulation skills then the intervention would target the development of self-regulation skills. Therefore, teams should always use the data gathered to confirm the hypothesis to drive the selection of the intervention.

Strategy: Review the intervention to ensure that the intervention targets the hypothesis (i.e., reason why the problem is occurring). The team should be able to explain how the intervention will address the cause of the problem (i.e., hypothesis). The intervention should have some empirical evidence that indicates the intervention is capable of addressing the cause.
Vulnerable Decision Point: Improving Cultural Responsiveness of Interventions

Guiding Question: Did we use strategies to improve the cultural responsiveness of the intervention?

How Implicit Bias Shows Up: Teams not only select an intervention based on data, but they should also select interventions that are culturally responsive. According to the Wisconsin RtI Center, culturally responsive practices are those in which educators recognize their own cultural attitudes/beliefs as well as those of the children and families they serve. Therefore, the attitudes/beliefs of students should be considered when selecting an intervention that will best meet their needs. Researchers use 3 strategies to increase the cultural responsiveness of interventions: 1) design interventions for specific groups, 2) design an intervention and implement it with groups that are similar to your population, and 3) implement an evidence based intervention and measure treatment acceptability. Teams can use any one of these strategies to design culturally responsive interventions. Each strategy is explained below.

Strategy 1: Select a culturally specific intervention
Review research to identify interventions that have been designed for specific populations of students for specific problems.

Strategy 2: Select an evidence based intervention that has been effective with similar populations
Although selecting an intervention that is specifically designed for the student’s cultural group is ideal, there are not very many of these kinds of interventions. In situations where there is not a culturally responsive, evidence based intervention available, teams should select interventions that have been effective with students of similar demographics (e.g., race, language, gender, SES, etc.). To find these interventions, read intervention articles and look at the sample demographics to determine if the intervention has been implemented with similar populations.
TIP: Teams should review research before the start of the school year and create a database of interventions with the sample demographics identified.

Strategy 3: Select any evidence based intervention and couple with a treatment acceptability checklist
When teams cannot find interventions that are culturally specific or have been implemented with similar populations, teams should use an intervention that is evidence based and also collect data on the student’s acceptability of the intervention. Intervention acceptability is the extent to which the student likes/dislikes elements of the intervention and believe that the intervention was helpful in addressing the problem. To measure acceptability, the intervention can ask the student the extent to which he/she liked/dislike the different components of the intervention and whether he/she thinks the intervention was helpful. If the student liked most of the intervention then it can be deemed acceptable. On the other hand, if they do not like the intervention then the intervention has low acceptability. If the intervention has low acceptability and it is ineffective then the low acceptability may be the reason why the intervention was not effective. The team would then select an intervention that would be more acceptable to the student in order to improve the effectiveness of the intervention.