You are here

Science and Engineering Practices

What do scientists and engineers do? Practices can be an effective starting point for implementation.

girl holding flask too close to her faceThe Science and Engineering Practices (SEPs) of the Wisconsin Standards for Science provide a useful starting point to reflect on improving instruction. Students should be doing the work of scientists and engineers, not just learning about science and engineering. The practices are also not meant to be a new "scientific method" or to be done in order. As noted in this AIR report, scientific inquiry looks different in the WSS/NGSS, moving beyond simplified notions of a scientific method. The NRC Framework for K-12 Science provides an overview of these practices, as does this NSTA article by Rodger Bybee. The list of practices below links to further resources to build understanding and support implementation.

Ask Questions

students with hands raised to ask questionsStudents should have opportunities to ask their own questions about phenomena and then design investigations and do research to begin to find the answers. 

return to top

Develop and Use Models

iteration image for modelingLike scientists, students should develop models that represent their thinking about a particular phenomenon. These models typically simplify (put boundaries around) a particular system to aid in making sense of it. The models could be mental models or might include drawings, diagrams, photos, graphical displays, formulas, computer simulations, etc. It's essential to note that models are not just recreated versions of provided information (like organelles of a cell), but a living tool for explaining, predicting, and comparing phenomena that is revised as new information is learned.  

return to top

Plan and Carry out Investigations

beaker to show carrying out investigationsStarting in kindergarten students should have opportunities to carry out investigations. Their control over planning them will grow over time, perhaps beginning with choosing the variable to test in kindergarten. Cookbook labs should not be the norm; instead, students should be collaboratively determining what data and variables are important in understanding a phenomenon, how they'll collect relevant data, and whether their investigation will accurately provide the information they seek. 

return to top

Analyze and Interpret Data

practices of scienceAcross all subject areas, students should be using evidence to support their arguments. They need practice in figuring out how to design experiments and research to gather the data that they need and to analyze that data. It's important they also have opportunities to critique of the quality of that data and whether it's sufficient to answer the questions under study. 

return to top

Use Mathematics and Computational Thinking

computer image for computational thinkingStudents should not just be following a protocol or plugging numbers into formulas; they should be thinking mathematically, as laid out in the Standards for Mathematical Practice of the Common Core. Students should build up a conceptual understanding of how and why the math is used. One way that is sometimes done is for them to experience the phenomenon and model how that phenomenon works through mathematics - building up the necessary variables and relationships within those formulas. Computational thinking relates to mathematical thinking, requiring a logical sequence of steps to figure out and evaluate ideas. 

return to top

Construct Explanations

writing down explanationsWhat is good evidence? What is sufficient evidence? One structure for this practice is to have students support claims (answers to questions) with evidence, using scientific reasoning and understanding to detail why the evidence supports the claim. This CER approach (claim, evidence, reasoning) is applicable across subject areas and connect well to ELA standards. 

return to top

Engage in Argument from Evidence + Student Dialogue

dialogue boxes to show arguing from evidenceStudents should be talking about science - making sense of phenomena together. Based on research, teacher talk should be less than 30% of class time (even including whole-group conversations). In argumentation, students should be sharing their explanations and evidence, comparing ideas, and revising ideas through dialogue. 

return to top

Obtain, Evaluate, and Communicate Information

social media image for obtaining infoStudents have access to lots of quality information and lots of misleading information. They need to be able to think scientifically as they obtain and evaluate this information overload. Engineers and scientists also repeatedly say that one of the most (if not the most) important skill in their work is effectively communicating. 

return to top

Define Problems and Design Solutions (Engineering)

tools for engineering design - not that you need these toolsEngineering and the impacts of technology on society are part of the science standards. They're intended to connect to and extend science learning, not be taught solely for the sake of engineering. Engineering questions will be part of the new Forward Exam in science, particularly with requiring students to consider criteria and constraints of designs. 

return to top

For questions about this information, contact Kevin Anderson (608) 266-3319